cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004757 Binary expansion starts 101.

Original entry on oeis.org

5, 10, 11, 20, 21, 22, 23, 40, 41, 42, 43, 44, 45, 46, 47, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185
Offset: 1

Views

Author

Keywords

Examples

			22 in binary is 10110, so 22 is in sequence.
		

Crossrefs

Cf. A004754 (10), A004755 (11), A004756 (100), A004758 (110), A004759 (111).

Programs

  • Haskell
    import Data.List (transpose)
    a004757 n = a004757_list !! (n-1)
    a004757_list = 5 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004757_list
    -- Reinhard Zumkeller, Dec 04 2015
    
  • Mathematica
    Table[n + 4*2^Floor@ Log2@ n, {n, 57}] (* or *)
    w = {1, 0, 1}; Select[Range[5, 185], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 10 2016 *)
    Select[Range[5,200],Take[IntegerDigits[#,2],3]=={1,0,1}&] (* Harvey P. Dale, Aug 26 2016 *)
  • PARI
    a(n)=n+4*2^floor(log(n)/log(2))
    
  • Python
    def A004757(n): return n+(2<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 4*[n==0].
a(n) = n + 4 * 2^floor(log_2(n)) = A004756(n) + A053644(n).
a(2^m+k) = 5*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003