cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004790 Numbers k >= 2 such that if 1 < j < k then (fractional part of log k) < (fractional part of log j).

Original entry on oeis.org

2, 3, 8, 21, 55, 149, 404, 1097, 2981, 162755, 1202605, 3269018, 8886111, 24154953, 178482301, 9744803447, 26489122130, 195729609429, 532048240602, 1446257064292, 3931334297145, 10686474581525, 29048849665248, 78962960182681, 583461742527455, 1586013452313431
Offset: 1

Views

Author

Keywords

Comments

Sequence lists all numbers k > 1 for which the fractional part of log(k) reaches a record low. For n > 1, this can happen only when a(n) = ceiling(e^m) for some positive integer m; see Example section. - Jon E. Schoenfield, May 28 2018

Examples

			From _Jon E. Schoenfield_, May 28 2018: (Start)
k = ceiling(e^m) yields a term for some but not all positive integers m:
.
   m |      k=ceiling(e^m)       |          log(k)
  ---+---------------------------+--------------------------
   1 |                 3 = a(2)  |  1.0986122886681096913...
   2 |                 8 = a(3)  |  2.0794415416798359282...
   3 |                21 = a(4)  |  3.0445224377234229965...
   4 |                55 = a(5)  |  4.0073331852324709186...
   5 |               149 = a(6)  |  5.0039463059454591409...
   6 |               404 = a(7)  |  6.0014148779611500697...
   7 |              1097 = a(8)  |  7.0003344602752302459...
   8 |              2981 = a(9)  |  8.0000140936780714441...
   9 |              8104         |  9.0001130459285193087...
  10 |             22027         | 10.0000242525841575280...
  11 |             59875         | 11.0000143347132163589...
  12 |            162755 = a(10) | 12.0000012815651115743...
  13 |            442414         | 13.0000013742591718739...
  14 |           1202605 = a(11) | 14.0000005952373691014...
  15 |           3269018 = a(12) | 15.0000001919622191103...
  16 |           8886111 = a(13) | 16.0000000539597288735...
  17 |          24154953 = a(14) | 17.0000000102018291255...
  18 |          65659970         | 18.0000000131384387554...
  19 |         178482301 = a(15) | 19.0000000002062542837...
  20 |         485165196         | 20.0000000012165129058...
  21 |        1318815735         | 21.0000000003918555785...
  22 |        3584912847         | 22.0000000002422397629...
  23 |        9744803447 = a(16) | 23.0000000000770767110...
  24 |       26489122130 = a(17) | 24.0000000000059091314...
  25 |       72004899338         | 25.0000000000085289679...
  26 |      195729609429 = a(18) | 26.0000000000008237677...
  27 |      532048240602 = a(19) | 27.0000000000003785057...
  28 |     1446257064292 = a(20) | 28.0000000000003628859...
  29 |     3931334297145 = a(21) | 29.0000000000002436642...
  30 |    10686474581525 = a(22) | 30.0000000000000503302...
  31 |    29048849665248 = a(23) | 31.0000000000000197862...
  32 |    78962960182681 = a(24) | 32.0000000000000038605...
  33 |   214643579785917         | 33.0000000000000043578...
  34 |   583461742527455 = a(25) | 34.0000000000000002032...
  35 |  1586013452313431 = a(26) | 35.0000000000000001714...
  36 |  4311231547115196         | 36.0000000000000001792...
.
For k = ceiling(e^m) > 2, 0 < frac(log(k)) < e^(-m), so frac(log(k)) must approach 0 as m increases, but it does not do so monotonically; at values of m where frac(log(k)) is particularly small relative to e^(-m) (e.g., at m = 8 or m = 19), the next term after a(n) = k = ceiling(e^m) can be as large as a(n+1) = ceiling(e^(ceiling(-log(frac(log(k)))))).
(End)
		

Crossrefs

Cf. A004791.

Programs

  • PARI
    lista(n) = {last = frac(log(2));for (k=2, n, new = frac(log(k)); if (new < last, print1 (k, ", "); last = new;););} \\ Michel Marcus, Mar 21 2013

Extensions

More terms from David W. Wilson
a(24)-a(26) from Jon E. Schoenfield, May 28 2018