A004797 Convolution of A002024 with itself.
1, 4, 8, 14, 22, 30, 41, 54, 67, 82, 99, 118, 138, 160, 182, 206, 234, 262, 292, 322, 353, 388, 425, 462, 501, 542, 583, 626, 671, 718, 766, 818, 870, 922, 976, 1030, 1088, 1148, 1210, 1274, 1338, 1402, 1469, 1538, 1607, 1678, 1753, 1828, 1905, 1984, 2063
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Raphael Schumacher, The self-counting identity, Fib. Quart., 55 (No. 2 2017), 157-167.
Crossrefs
Cf. A002024.
Programs
-
Maple
a002024:= [seq(i$i,i=1..10)]: g002024:= add(a002024[i]*x^(i-1),i=1..nops(a002024)): g:= expand(g002024^2): seq(coeff(g,x,i),i=0..degree(g002024)); # Robert Israel, May 30 2017
-
PARI
nn(n)=(sqrtint(n*8)+1)\2; a(n) = sum(k=1, n, nn(k)*nn(n-k+1)); \\ Michel Marcus, May 30 2017
Formula
G.f.: (1/(1 - x)^2)*Product_{k>=1} (1 - x^(2*k))^2/(1 - x^(2*k-1))^2. - Ilya Gutkovskiy, May 30 2017