cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004822 Numbers that are the sum of 11 positive 11th powers.

Original entry on oeis.org

11, 2058, 4105, 6152, 8199, 10246, 12293, 14340, 16387, 18434, 20481, 22528, 177157, 179204, 181251, 183298, 185345, 187392, 189439, 191486, 193533, 195580, 197627, 354303, 356350, 358397, 360444, 362491, 364538, 366585, 368632, 370679, 372726, 531449, 533496, 535543
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
460807606 is in the sequence as 460807606 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 3^11 + 3^11 + 5^11 + 5^11 + 6^11.
795925198 is in the sequence as 795925198 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 4^11 + 4^11 + 5^11 + 6^11 + 6^11.
1504395992 is in the sequence as 1504395992 = 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 6^11 + 6^11 + 6^11 + 6^11. (End)
		

Crossrefs

Cf. A008455.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    M = 6347807907; m = M^(1/11) // Ceiling; Reap[
    For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
    For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
    For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
    For[j = i, j <= m, j++, For[k = j, k <= m, k++,
    s = a^11+b^11+c^11+d^11+e^11+f^11+g^11+h^11+i^11+j^11+k^11;
    If[s <= M, Sow[s]]]]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)