A004826 Numbers that are the sum of at most 4 positive cubes.
0, 1, 2, 3, 4, 8, 9, 10, 11, 16, 17, 18, 24, 25, 27, 28, 29, 30, 32, 35, 36, 37, 43, 44, 51, 54, 55, 56, 62, 63, 64, 65, 66, 67, 70, 72, 73, 74, 80, 81, 82, 88, 89, 91, 92, 93, 99, 100, 107, 108, 118, 119, 125, 126, 127, 128, 129, 130, 133, 134, 135
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Siu-lun Alan Lee, On Waring's Problem: Two Cubes and Two Minicubes, arXiv:1006.5142 [math.NT], 2010.
- G. Villemin's Almanach of Numbers, Sum of Four Cubes (0 through 100).
- Index entries for sequences related to sums of cubes
Crossrefs
Cf. A022566 (Numbers that are not the sum of 4 nonnegative cubes). - Jonathan Vos Post, Jun 29 2010
Programs
-
Mathematica
Reap[For[k = 0, k <= 200, k++, If[PowersRepresentations[k, 4, 3] != {}, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Oct 05 2018 *)
Comments