cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A351338 Least nonnegative integer m such that n = x^3 + y^3 - (z^3 + m^3) for some nonnegative integers x,y,z with z <= m.

Original entry on oeis.org

0, 0, 0, 5, 11, 4, 1, 1, 0, 0, 3, 2, 2, 35, 1, 1, 0, 7, 2, 2, 2, 12, 14, 10, 4, 1, 1, 0, 0, 3, 3, 44, 22, 1, 1, 0, 3, 3, 2, 8, 8, 127, 4, 7, 3, 2, 2, 8, 2, 2, 97, 7, 1, 1, 0, 2, 2, 2, 17, 13, 4, 4, 1, 1, 0, 0, 6, 20, 4, 4, 1, 1, 0, 15, 3, 2, 53, 22, 7, 3, 4, 6, 2, 2, 5, 14, 139, 4, 4, 1, 1, 0, 5, 3, 5, 22, 4, 3, 3, 3, 3
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 08 2022

Keywords

Comments

Conjecture: a(n) exists for any n >= 0. Equivalently, each integer can be written as x^3 + y^3 - (z^3 + w^3) with x,y,z,w nonnegative integers.
This is stronger than Sierpinski's conjecture which states that any integer is a sum of four integer cubes.

Examples

			a(41) = 127 with 41 = 41^3 + 128^3 - 49^3 -127^3.
a(130) = 143 with 130 = 37^3 + 169^3 - 125^3 - 143^3.
a(4756) = 533 with 4756 = 265^3 + 538^3 - 284^3 - 533^3.
a(5134) = 389 with 5134 = 19^3 + 418^3 - 242^3 - 389^3.
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=IntegerQ[n^(1/3)];
    tab={};Do[m=0; Label[bb]; k=m^3; Do[If[CQ[n+k+x^3-y^3], tab=Append[tab,m];Goto[aa]],  {x, 0, m}, {y, 0, ((n+k+x^3)/2)^(1/3)}];m=m+1; Goto[bb]; Label[aa], {n, 0, 100}];Print[tab]

A001245 Numbers that are the sum of 4 cubes in more than 1 way.

Original entry on oeis.org

81, 126, 128, 216, 217, 219, 224, 243, 251, 252, 259, 278, 280, 315, 341, 343, 344, 345, 352, 371, 376, 378, 405, 408, 432, 434, 467, 469, 496, 522, 540, 559, 560, 567, 584, 593, 594, 648, 687, 702, 728, 729, 730, 737, 756, 758, 763, 765, 783, 793, 802
Offset: 1

Views

Author

Keywords

References

  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Table[{i,PowersRepresentations[i,4,3]}, {i,2000}], Length[#[[2]]]>1&]][[1]] (* Harvey P. Dale, Dec 11 2010 *)

A336449 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2*4^6.

Original entry on oeis.org

1, 9, 16, 25, 49, 81, 121, 169, 225, 289, -356, 361, 441, 529, 625, 729, 841, -948, 961, 1045, 1089, 1225, 1369, 1521, 1681, -1715, 1849, 1876, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, -3587, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5769, 5929
Offset: 1

Views

Author

XU Pingya, Aug 08 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
Let x = a^(2*k) - (a^k)*t - t^2, y = a^(2*k) + (a^k)*t - t^2, z = t^2; then x^3 + y^3 + 2*z^3 = 2*a^(6*k). When a = 4, k = 1, t = 2*n + 1; (x, y, z) are primitive solutions of equation. Thus, terms of A016754 are terms of the sequence.

Examples

			(-15)^3 + (-27)^3 + 2*25^3 = 11^3 + (-29)^3 + 2*25^3 = 8192, 25 is a term.
(-65)^3 + (449)^3 + 2*(-356)^3 = 8192, -356 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (8192 - x^3 - 2z^3)^(1/3) /. (-1)^(1/3) -> -1;
    If[Abs@x <= Abs@y && IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -5929, 5929}, {x, -Round[(Abs[8192 - 2z^3]/3)^(1/2)], Round[(Abs[8192 - 2z^3]/3)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 12000}];
    Select[v, MemberQ[u, #] &]

A336450 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2*5^6.

Original entry on oeis.org

1, -3, 4, 9, 16, 25, 36, 49, -56, 64, 81, 88, -104, 121, 144, -167, 169, 177, 196, -203, -243, -255, 256, 277, 289, 324, 361, -363, 373, -395, -411, 441, 484, 529, 576, 676, 709, -719, 729, 784, 841, 961, 1017, 1024, -1028, 1080, 1089, -1091, 1156, 1296, 1369
Offset: 1

Views

Author

XU Pingya, Aug 08 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
Let x = a^(2*m) - (a^m)*t - t^2, y = a^(2*m) + (a^m)*t - t^2, z = t^2; then x^3 + y^3 + 2*z^3 = 2*a^(6*m). When a = 5, m = 1, t = 5*n + k(k = {1, 2, 3, 4}); (x, y, z) are primitive solutions of equation. Thus, A047201(n)^2 are terms of the sequence.

Examples

			(-20)^3 + 34^3 + 2*(-3)^3 = 31250, -3 is a term.
(-11)^3 + 29^3 + 2*16^3 = 15^3 + 27^3 + 2*16^3 = 31250, 16 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (31250 - x^3 - 2z^3)^(1/3) /. (-1)^(1/3) -> -1;
    If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -1369, 1369}, {x, -Round[(Abs[31250 - 2z^3]/3)^(1/2)], Round[(Abs[31250 - 2z^3]/3)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 2739}];
    Select[v, MemberQ[u, #] &]

A336166 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2.

Original entry on oeis.org

0, 1, -3, 4, 9, -12, 16, 25, -27, -35, 36, 37, -48, 49, -59, 64, -75, 81, 100, -108, 121, 144, -147, -159, 169, 172, -192, 196, 225, -227, -243, -255, 256, 261, -287, 289, -300, -311, 324, -335, 361, -363, 373, 400, -432, 441, 484, -507, 529, 568, 576, -588
Offset: 1

Views

Author

XU Pingya, Jul 10 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
Segre shows that 1-(9/2)*A000578(2n), (-3)*A000290(n), and A016754(n) are terms of the sequence.

Examples

			(-5)^3 + (-11)^3 + 2 * 9^3 = 2, 9 is a term.
(25)^3 + (-23)^3 + 2 * (-12)^3 = 2, -12 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    t1 = Union[Plus@@@Tuples[Range[-11643, 11643]^3, 2]];
    t2 = Table[2 - 2z^3, {z, -588, 588}];
    t = Select[t1, MemberQ[t2, #] &];
    u = ((2 - t)/2)^(1/3) /. (-1)^(1/3) -> (-1);
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 1176}];
    Select[v, MemberQ[u, #] &]

A336226 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 1458.

Original entry on oeis.org

1, -3, 4, 9, -10, -12, 16, 21, 25, 37, -47, -48, 49, 64, -75, -87, 88, 100, 105, 121, 134, -147, 169, 172, -192, 196, -241, -243, 256, 289, -300, 361, -363, 400, 443, 484, -507, 529, 541, -588, 625, 676, -699, 732, -759, -768, 777, 784, 841, -867, 897, 961
Offset: 1

Views

Author

XU Pingya, Jul 17 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
(11 + 3*n - 9*n^2)^3 + (11 + 3*(n + 1) - 9*(n + 1)^2)^3 + 2*(3*n + 1)^6 = 1458, the numbers of the form (3*n + 1)^2 are terms of the sequence.
(11 - 3*n - 9*n^2)^3 + (11 - 3*(n + 1) - 9*(n + 1)^2)^3 + 2*(3*n + 2)^6 = 1458, the numbers of the form (3*n + 2)^2 are also terms of the sequence.
Thus, A001651(n)^2 are terms of the sequence. There is an infinity of nontrivial solutions to the equation.

Examples

			5^3 + 11^3 + 2 * 1^3 = 1458, 1 is a term.
(-1)^3 + (11)^3 + 2 * (4)^3 = 1458, 4 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (1458 - x^3 - 2 z^3)^(1/3) /. (-1)^(1/3) -> -1; If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -980, 980}, {x, -25319, 25319}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 2000}];
    Select[v, MemberQ[u, #] &]

A336230 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 128.

Original entry on oeis.org

1, 4, 9, 25, 49, 81, 121, 169, -224, 225, 289, 361, -383, 441, 504, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, -2219, 2401, 2601, -2687, 2809, 3025, 3249, 3481, -3680, 3721, 3969, 4225, -4283, 4417, 4489, 4761, 5041, 5329, -5459
Offset: 1

Views

Author

XU Pingya, Jul 12 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
(5 - 4*n^2)^3 + (5 - 4*(n + 1)^2)^3 + 2*(2*n + 1)^6 = 128. A000290(2*n + 1) are terms of the sequence, i.e., there is an infinity of nontrivial solutions to the equation.

Examples

			1^3 + 5^3 + 2 * 1^3 = 128, 1 is a term.
(-11)^3 + (-31)^3 + 2 * (25)^3 = 128, 25 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (128 - x^3 - 2 z^3)^(1/3) /. (-1)^(1/3) -> -1; If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -4761, 4761}, {x, -11550, 11550}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 9523}];
    Select[v, MemberQ[u, #] &]

A338239 Values z of primitive solutions (x, y, z) to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1.

Original entry on oeis.org

-1, 1, -5, 11, -17, 19, 29, -31, -37, -61, 79, -85, 113, -127, -143, 145, -209, 305, 361, -485, 487, 545, 647, 667, 811, -1091, -1151, 1153, -1235, -1429, -1525, 1597, 1699, -1793, -2249, 2251, -2533, 2627, -2677, 2977, -2981, 3089, -3295, 3739, -3887, 3889
Offset: 1

Views

Author

XU Pingya, Oct 18 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
When x = (3*c)*t - (9*a)*t^4, y = (9*a)*t^4, z = c - (9*a)*t^3; a*x^3 + a*y^3 + c*z^3 = c^4. Let a = 2, c = 1, then 1 - 18*n^3 and 1 + 18*n^3 are terms of the sequence. Also, -A337928 and A337929 are subsequences.

Examples

			2*25^3 + 2*(-64)^3 + 79^3 = 2*164^3 + 2*(-167)^3 + 79^3 = 1, 79 is a term.
		

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = ((1 - 2x^3 - z^3)/2)^(1/3) /. (-1)^(1/3) -> -1;
     If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -4000, 4000}, {x, -Round[(Abs[1 + z^3]/6)^(1/2)], Round[(Abs[1 + z^3]/6)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 8001}];
    Select[v, MemberQ[u, #] &]
Showing 1-8 of 8 results.