A004919 a(n) = floor(n*phi^4), where phi is the golden ratio, A001622.
0, 6, 13, 20, 27, 34, 41, 47, 54, 61, 68, 75, 82, 89, 95, 102, 109, 116, 123, 130, 137, 143, 150, 157, 164, 171, 178, 185, 191, 198, 205, 212, 219, 226, 233, 239, 246, 253, 260, 267, 274, 281, 287, 294, 301, 308
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. J. Hildebrand, Junxian Li, Xiaomin Li, and Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
- Index entries for sequences related to Beatty sequences
Crossrefs
Programs
-
Magma
[Floor((7+3*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Aug 22 2023
-
Mathematica
With[{c=GoldenRatio^4},Floor[c*Range[0,50]]] (* Harvey P. Dale, Apr 11 2012 *)
-
Python
from math import isqrt def A004919(n): return (3*n+isqrt(45*n**2)>>1)+(n<<1) # Chai Wah Wu, Aug 17 2022
-
SageMath
[floor(golden_ratio^4*n) for n in range(61)] # G. C. Greubel, Aug 22 2023
Formula
a(n) = 2*n + floor(3*n*tau). [Formula corrected by Charles R Greathouse IV, Mar 11 2011]
Comments