A004956 a(n) = ceiling(n*phi), where phi is the golden ratio, A001622.
0, 2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 38, 39, 41, 43, 44, 46, 47, 49, 51, 52, 54, 56, 57, 59, 60, 62, 64, 65, 67, 68, 70, 72, 73, 75, 77, 78, 80, 81, 83, 85, 86, 88, 89
Offset: 0
Links
- Christian Krause, Table of n, a(n) for n = 0..10000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 3.
- Benoit Cloitre, A study of a family of self-referential sequences, arXiv:2506.18103 [math.GM], 2025. See p. 7.
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Robbert Fokkink and Gandhar Joshi, On Cloitre's hiccup sequences, arXiv:2507.16956 [math.CO], 2025. See p. 3.
Crossrefs
Programs
-
Mathematica
Ceiling[Range[0,100]GoldenRatio] (* Paolo Xausa, Oct 28 2023 *) (* Second program: *) cloitreH[j_, x_, y_, z_, w_ : 120] := Module[{c, k}, c[] := False; k = x; c[x] = True; {x}~Join~Reap[Do[If[c[n - j], k += y, k += z]; c[k] = True; Sow[k], {n, 2, w}] ][[-1, 1]] ]; {0}~Join~cloitreH[0, 2, 2, 1] (* _Michael De Vlieger, Jul 30 2025 *)
-
PARI
{/* paws = Print Absolute values of all elements in vector v With same Sign as sn */ paws(v,sn) = for(m=1,matsize(v)[2], if(sign(v[m])==sign(sn),\ print1(abs(v[m]),",")))} {/* Sieve through lim numbers; make values negative to signify "removed" */ lim=100; v=vector(lim,i,i); i=0; j=0; c=1; while(i
0, k=v[i]; c=c--; while(c 0, c++)); v[j]=-v[j])); paws(v,1)\ /* Changing "1" to "-1" in paws() above prints out the terms of A026352 instead */} \\ Rick L. Shepherd, Dec 05 2009 -
PARI
a(n) = ceil(n*(1 + sqrt(5))/2); \\ Michel Marcus, Apr 13 2021
Comments