A004976 a(n) = floor(n*phi^3), where phi=(1+sqrt(5))/2.
0, 4, 8, 12, 16, 21, 25, 29, 33, 38, 42, 46, 50, 55, 59, 63, 67, 72, 76, 80, 84, 88, 93, 97, 101, 105, 110, 114, 118, 122, 127, 131, 135, 139, 144, 148, 152, 156, 160, 165, 169, 173, 177, 182, 186, 190, 194, 199
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. J. Hildebrand, Junxian Li, Xiaomin Li, and Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
- Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol 49, Number 2, May 2011.
- Index entries for sequences related to Beatty sequences
Programs
-
Mathematica
r=5^(1/2); k=1; t=Table[Floor[n*r+k*r]-Floor[n*r]-Floor[k*r], {n,1,220}] (* A188221 *) Flatten[Position[t,0] ] (* A188222 *) Flatten[Position[t,1] ] (* A004976 *) (* Clark Kimberling, Mar 24 2011 *) With[{c=GoldenRatio^3},Floor[c*Range[0,50]]] (* Vincenzo Librandi, Apr 12 2012 *)
-
PARI
a(n)=2*n+sqrtint(5*n^2) \\ Charles R Greathouse IV, Apr 12 2012
-
Python
from math import isqrt def A004976(n): return (isqrt(20*n**2)>>1)+(n<<1) # Chai Wah Wu, Aug 17 2022
Formula
a(n) = n+floor(2*n*phi). [Formula corrected by Clark Kimberling, Mar 22 2008]
Comments