cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A276866 First differences of the Beatty sequence A004976 for 2 + sqrt(5).

Original entry on oeis.org

4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4
Offset: 1

Views

Author

Clark Kimberling, Sep 24 2016

Keywords

Comments

(a(n+1)) is the unique fixed point of the substitution 4 -> 4445, 5 -> 44454, since alpha = sqrt(5)-2 satisfies 1/(4+alpha) = alpha. See Allouche and Shallit on characteristic words. - Michel Dekking, Jan 30 2017

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 285.

Crossrefs

Programs

  • Mathematica
    z = 500; r = 2+Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A004976 *)
    Differences[b] (* A276866 *)

Formula

a(n) = floor(n*r) - floor(n*r - r), where r = 2 + sqrt(5), n >= 1.

A001950 Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.

Original entry on oeis.org

2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157
Offset: 1

Views

Author

Keywords

Comments

Indices at which blocks (1;0) occur in infinite Fibonacci word; i.e., n such that A005614(n-2) = 0 and A005614(n-1) = 1. - Benoit Cloitre, Nov 15 2003
A000201 and this sequence may be defined as follows: Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
a(n) = n-th integer which is not equal to the floor of any multiple of phi, where phi = (1+sqrt(5))/2 = golden number. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), May 09 2007
Write A for A000201 and B for the present sequence (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB, ..., BBB, ... appear in many complementary equations having solution A000201 (or equivalently, the present sequence). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Apart from the initial 0 in A090909, is this the same as that sequence? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
If we define a base-phi integer as a positive number whose representation in the golden ratio base consists only of nonnegative powers of phi, and if these base-phi integers are ordered in increasing order (beginning 1, phi, ...), then it appears that the difference between the n-th and (n-1)-th base-phi integer is phi-1 if and only if n belongs to this sequence, and the difference is 1 otherwise. Further, if each base-phi integer is written in linear form as a + b*phi (for example, phi^2 is written as 1 + phi), then it appears that there are exactly two base-phi integers with b=n if and only if n belongs to this sequence, and exactly three base-phi integers with b=n otherwise. - Geoffrey Caveney, Apr 17 2014
Numbers with an odd number of trailing zeros in their Zeckendorf representation (A014417). - Amiram Eldar, Feb 26 2021
Numbers missing from A066096. - Philippe Deléham, Jan 19 2023

Examples

			From _Paul Weisenhorn_, Aug 18 2012 and Aug 21 2012: (Start)
a(14) = floor(14*phi^2) = 36; a'(14) = floor(14*phi)=22;
with r=9 and j=1: a(13+1) = 34 + 2 = 36;
with r=8 and j=1: a'(13+1) = 21 + 1 = 22.
k=6 and a(5)=13 < n <= a(6)=15
a(14) = 3*14 - 6 = 36; a'(14) = 2*14 - 6 = 22;
a(15) = 3*15 - 6 = 39; a'(15) = 2*15 - 6 = 24. (End)
		

References

  • Claude Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 324, Problem 2.
  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
  • Martin Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = greatest k such that s(k) = n, where s = A026242.
Complement of A000201 or A066096.
A002251 maps between A000201 and A001950, in that A002251(A000201(n)) = A001950(n), A002251(A001950(n)) = A000201(n).
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
First differences give (essentially) A076662.
Bisections: A001962, A001966.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a001950 n = a000201 n + n  -- Reinhard Zumkeller, Mar 10 2013
    
  • Magma
    [Floor(n*((1+Sqrt(5))/2)^2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
    
  • Maple
    A001950 := proc(n)
        floor(n*(3+sqrt(5))/2) ;
    end proc:
    seq(A001950(n),n=0..40) ; # R. J. Mathar, Jul 16 2024
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])^2/4]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio^2] &, 60] (* Robert G. Wilson v, Apr 17 2010 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+3)/2)
    
  • PARI
    A001950(n)=(sqrtint(n^2*5)+n*3)\2 \\ M. F. Hasler, Sep 17 2014
    
  • Python
    from math import isqrt
    def A001950(n): return (n+isqrt(5*n**2)>>1)+n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = n + floor(n*phi). In general, floor(n*phi^m) = Fibonacci(m-1)*n + floor(Fibonacci(m)*n*phi). - Benoit Cloitre, Mar 18 2003
a(n) = n + floor(n*phi) = n + A000201(n). - Paul Weisenhorn and Philippe Deléham
Append a 0 to the Zeckendorf expansion (cf. A035517) of n-th term of A000201.
a(n) = A003622(n) + 1. - Philippe Deléham, Apr 30 2004
a(n) = Min(m: A134409(m) = A006336(n)). - Reinhard Zumkeller, Oct 24 2007
If a'=A000201 is the ordered complement (in N) of {a(n)}, then a(Fib(r-2) + j) = Fib(r) + a(j) for 0 < j <= Fib(r-2), 3 < r; and a'(Fib(r-1) + j) = Fib(r) + a'(j) for 0 < j <= Fib(r-2), 2 < r. - Paul Weisenhorn, Aug 18 2012
With a(1)=2, a(2)=5, a'(1)=1, a'(2)=3 and 1 < k and a(k-1) < n <= a(k) one gets a(n)=3*n-k, a'(n)=2*n-k. - Paul Weisenhorn, Aug 21 2012

Extensions

Corrected by Michael Somos, Jun 07 2000

A329825 Beatty sequence for (3+sqrt(17))/4.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 14, 16, 17, 19, 21, 23, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 51, 53, 55, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 74, 76, 78, 80, 81, 83, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 103, 105, 106, 108, 110, 112, 113
Offset: 1

Views

Author

Clark Kimberling, Nov 22 2019

Keywords

Comments

Let r = (3+sqrt(17))/4. Then (floor(n*r)) and (floor(n*r + r/2)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. The sequence (a(n) mod 2) of 0's and 1's has only two run-lengths: 4 and 5.
More generally, suppose that t > 0. There exists an irrational number r such that (floor(n*r)) and (floor(n*(r+t))) are a pair of Beatty sequences. Specifically, r = (2 - t + sqrt(t^2 + 4))/2, as in the Mathematica code below. See Comments at A182760.
************
Guide to related sequences:
t = 1: A000201 and A001950 (Wythoff sequences), r = (1+sqrt(5))/2
t = 1/2: A329825 and A329826, r = (3 + sqrt(17))/4
t = 1/3: A329827 and A329828, r = (5 + sqrt(37))/6
t = 2/3: A329829 and A329830, r = (2 + sqrt(10))/3
t = 1/4: A329831 and A329832, r = (7 + sqrt(65))/8
t = 3/4: A329833 and A329834, r = (5 + sqrt(73))/8
t = 1/5: A329835 and A329836, r = (9 + sqrt(101))/10
t = 2/5: A329837 and A329838, r = (4 + sqrt(26))/5
t = 5/2: A329839 and A329840, r = (-1 + sqrt(41))/4
t = 3/5: A329841 and A329842, r = (7 + sqrt(109))/10
t = 5/3: A329843 and A329844, r = (1 + sqrt(61))/6
t = 5/4: A329847 and A329848, r = (3 + sqrt(89))/8
t = 4/5: A329845 and A329846, r = (3 + sqrt(29))/5
t = 6/5: A329923 and A329924, r = (2 + sqrt(34))/5
t = 8/5: A329925 and A329926, r = (1 + sqrt(41))/5
t = 2: A001951 and A001952, r = sqrt(2)
t = 3: A001961 and A004976, r = -1 + sqrt(5)
t = 4: A001961 and A001962, r = -1 + sqrt(5)
t = 5: A184522 and A184523, r = (-3 + sqrt(29))/2
t = 6: A187396 and A187395, r = -2 + sqrt(10).
Starts to deviate from A059565 at a(73). - R. J. Mathar, Nov 26 2019
Sequences for t = 5/4, 4/5 and 3 corrected by Georg Fischer, Aug 22 2021

Crossrefs

Cf. A188485, A329826 (complement), A182760.

Programs

  • Mathematica
    t = 1/2; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)];
    Table[Floor[r*n], {n, 1, 200}]  (* A329825 *)
    Table[Floor[s*n], {n, 1, 200}]  (* A329826 *)
  • PARI
    a(n)=(sqrtint(17*n^2)+3*n)\4 \\ Charles R Greathouse IV, Jan 25 2022

Formula

a(n) = floor(r*n), where r = (3+sqrt(17))/4.

A066096 a(n) = floor(n*phi), where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

0, 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001

Keywords

Comments

a(n) is the smallest number different from a(i) and a(i)+i for i < n.
The losing positions in the game of Wythoff-Nim are precisely the pairs (a(n), a(n)+n).

Crossrefs

Programs

  • Magma
    [Floor((1+Sqrt(5))*n/2): n in [0..80]]; // G. C. Greubel, Sep 12 2023
    
  • Mathematica
    Floor[GoldenRatio*Range[0, 80]] (* G. C. Greubel, Sep 12 2023 *)
  • PARI
    a(n) = (n+sqrtint(5*n^2))\2;
    [a(n)|n<-[0..100]] \\ Simon Strandgaard, Jun 28 2022
    
  • SageMath
    [floor(golden_ratio*n) for n in range(81)] # G. C. Greubel, Sep 12 2023

Formula

For n >= 1, a(n) = A000201(n).
Duplicate values in A060143.
a(n) = 1 + A022342(n) = A000201(n).
a(n) = floor(n*phi), where phi = (1 + sqrt(5))/2. - Peter Munn, Jan 12 2018
a(n) = A026351(n) - 1. - Philippe Deléham, Jan 15 2023

Extensions

Name corrected by Peter Munn, Dec 06 2017
New name using a formula from Peter Munn by Peter Luschny, Jan 18 2023

A004922 a(n) = floor(n*phi^7), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 435, 464, 493, 522, 551, 580, 609, 638, 667, 696, 725, 754, 783, 812, 841, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1277, 1306, 1335, 1364
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*((1 + Sqrt(5))/2)^7): n in [0..50]]; // Vincenzo Librandi, Jul 22 2015
  • Mathematica
    Table[Floor[n ((1 + Sqrt[5])/2)^7], {n, 0, 50}] (* Vincenzo Librandi, Jul 22 2015 *)
  • Python
    from sympy import sqrt
    phi = (1 + sqrt(5))/2
    for n in range(0,101): print(int(n*phi**7), end=', ') # Karl V. Keller, Jr., Jul 22 2015
    

A090909 Terms a(k) of A073869 for which a(k-1) = a(k), and a(k) and a(k+1) are distinct.

Original entry on oeis.org

2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157, 159, 162
Offset: 1

Views

Author

Amarnath Murthy, Dec 14 2003

Keywords

Comments

Is this the same as A001950? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
Identical to n + A066096(n)? - Ed Russell (times145(AT)hotmail.com), May 09 2009
From Michel Dekking, Dec 18 2024: (Start)
Proof of Mihailovs's conjecture: This follows immediately from the result in my 2023 paper in JIS that A073869 is equal to Hofstadter’s G-sequence A005206, and my recent comment in A005206 on the pairs of duplicate values in A005206.
The answer to Russell’s question is well-known, and also Detlef’s formula is well-known.
Originally, this sequence was given the name “Terms a(k) of A073869 for which a(k-1), a(k) and a(k+1) are distinct.’’ These are the triples (1,2,3),(4,5,6),(6,7,8), (9,10,11), ... occurring at k = 3, k = 8, k = 11, k = 16,... in A005206. Note that if a duplicate pair (a(m-1), a(m)) is followed directly by another duplicate pair, then a(m-3), a(m-2) and a(m-1) are distinct, and only so. This corresponds to the block 00 occurring in the Fibonacci word obtained by projecting A005206 on the Fibonacci word (see Corollary in my recent comment in A005206). These occurrences are at the Wythoff AB numbers A003623 according to Wolfdieter Lang’s comment in A003623. Conclusion: the sequence of terms a(k) of A073869 for which a(k-1), a(k), and a(k+1) are distinct is given by the Wythoff AB-numbers. (End)

Examples

			A073869 = A005206 = 0,1,1,2,3,3,4,4,5,6,6,... The pair (1,1) occurs at k = 2.
		

Crossrefs

Programs

  • Magma
    [Floor((3+Sqrt(5))*n/2): n in [0..80]]; // G. C. Greubel, Sep 12 2023
    
  • Mathematica
    (* First program *)
    A002251= Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] -Total[#1]] &, {1}, Range[2, 500]] - 1; (* Birkas Gyorgy's code of A019444, modified *)
    A090909= Join[{0}, Select[Partition[A002251, 2, 1], #[[2]] > #[[1]] &][[All, 2]]] (* G. C. Greubel, Sep 12 2023 *)
    (* Second program *)
    Floor[GoldenRatio^2*Range[0,80]] (* G. C. Greubel, Sep 12 2023 *)
  • SageMath
    [floor(golden_ratio^2*n) for n in range(81)] # G. C. Greubel, Sep 12 2023

Formula

a(n) = floor(phi^2*n), where phi = (1+sqrt(5))/2. - Gary Detlefs, Mar 10 2011

Extensions

More terms from R. J. Mathar, Sep 29 2017
Name corrected by Michel Dekking, Dec 13 2024

A004919 a(n) = floor(n*phi^4), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 6, 13, 20, 27, 34, 41, 47, 54, 61, 68, 75, 82, 89, 95, 102, 109, 116, 123, 130, 137, 143, 150, 157, 164, 171, 178, 185, 191, 198, 205, 212, 219, 226, 233, 239, 246, 253, 260, 267, 274, 281, 287, 294, 301, 308
Offset: 0

Views

Author

Keywords

Comments

The golden section or golden ratio is now usually denoted by "phi", but it in the older literature it was more often denoted by "tau." - N. J. A. Sloane, Feb 17 2013

Crossrefs

Programs

  • Magma
    [Floor((7+3*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Aug 22 2023
    
  • Mathematica
    With[{c=GoldenRatio^4},Floor[c*Range[0,50]]] (* Harvey P. Dale, Apr 11 2012 *)
  • Python
    from math import isqrt
    def A004919(n): return (3*n+isqrt(45*n**2)>>1)+(n<<1) # Chai Wah Wu, Aug 17 2022
    
  • SageMath
    [floor(golden_ratio^4*n) for n in range(61)] # G. C. Greubel, Aug 22 2023

Formula

a(n) = 2*n + floor(3*n*tau). [Formula corrected by Charles R Greathouse IV, Mar 11 2011]

A004924 a(n) = floor(n*phi^9), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 76, 152, 228, 304, 380, 456, 532, 608, 684, 760, 836, 912, 988, 1064, 1140, 1216, 1292, 1368, 1444, 1520, 1596, 1672, 1748, 1824, 1900, 1976, 2052, 2128, 2204, 2280, 2356, 2432, 2508, 2584, 2660, 2736
Offset: 0

Views

Author

Keywords

Comments

The first differences a(n) - a(n-1) generally equal 76 with exceptions for example at n = 77, 153, 229, 305, 381, 457, ..., 5777, 5854, 5930, .... where they equal 77. - R. J. Mathar, Jan 11 2008

Crossrefs

Programs

  • Magma
    [Floor((38+17*Sqrt(5))*n): n in [0..60]]; // G. C. Greubel, Aug 24 2023
    
  • Mathematica
    Floor[GoldenRatio^9*Range[0, 60]] (* G. C. Greubel, Aug 24 2023 *)
  • SageMath
    [floor(golden_ratio^9*n) for n in range(61)] # G. C. Greubel, Aug 24 2023

A004926 a(n) = floor(n*phi^11), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 199, 398, 597, 796, 995, 1194, 1393, 1592, 1791, 1990, 2189, 2388, 2587, 2786, 2985, 3184, 3383, 3582, 3781, 3980, 4179, 4378, 4577, 4776, 4975, 5174, 5373, 5572, 5771, 5970, 6169, 6368, 6567, 6766
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor((199+89*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Aug 27 2023
    
  • Mathematica
    Floor[GoldenRatio^(11)*Range[0, 60]] (* G. C. Greubel, Aug 27 2023 *)
  • SageMath
    [floor(golden_ratio^(11)*n) for n in range(61)] # G. C. Greubel, Aug 27 2023

A004928 a(n) = floor(n*phi^13), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 521, 1042, 1563, 2084, 2605, 3126, 3647, 4168, 4689, 5210, 5731, 6252, 6773, 7294, 7815, 8336, 8857, 9378, 9899, 10420, 10941, 11462, 11983, 12504, 13025, 13546, 14067, 14588, 15109, 15630, 16151
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor((521+233*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Sep 05 2023
    
  • Mathematica
    Floor[GoldenRatio^(13)*Range[0, 60]] (* G. C. Greubel, Sep 05 2023 *)
  • SageMath
    [floor(golden_ratio^(13)*n) for n in range(61)] # G. C. Greubel, Sep 05 2023
Showing 1-10 of 32 results. Next