A005001 a(n) = Sum_{k=0..n-1} Bell(k), where the Bell numbers Bell(k) are given in A000110.
0, 1, 2, 4, 9, 24, 76, 279, 1156, 5296, 26443, 142418, 820988, 5034585, 32679022, 223578344, 1606536889, 12086679036, 94951548840, 777028354999, 6609770560056, 58333928795428, 533203744952179, 5039919483399502, 49191925338483848, 495150794633289137
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- J. Riordan, Cached copy of paper
- J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
Crossrefs
Programs
-
Maple
with(combinat): seq(add(bell(j), j = 0 .. n-1), n = 0 .. 22); # Emeric Deutsch, May 01 2010
-
Mathematica
nn=20;Range[0,nn]!CoefficientList[Series[Exp[-1](-Exp[Exp[x]]+Exp[1+x]-Exp[x]ExpIntegralEi[1]+Exp[x]ExpIntegralEi[Exp[x]]),{x,0,nn}],x] (* Geoffrey Critzer, Feb 04 2014 *) BellB /@ Range[0, 30] // Accumulate // Prepend[#, 0]& (* Jean-François Alcover, Oct 19 2019 *)
-
Python
# Python 3.2 or higher required. from itertools import accumulate A005001_list, blist, a, b = [0,1,2], [1], 2, 1 for _ in range(30): blist = list(accumulate([b]+blist)) b = blist[-1] a += b A005001_list.append(a) # Chai Wah Wu, Sep 19 2014
Formula
a(0) = 0; for n >= 0, a(n+1) = 1 + Sum_{j=1..n} (C(n, j)-C(n, j+1))*a(j).
G.f.: x*( 1 + (G(0)+1)*x/(1-x) ) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k+x-1) - x*(2*k+1)*(2*k+3)*(2*x*k+x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+2*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 20 2012
G.f.: x*G(0)/(1-x^2) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: x*( G(0) - 1 )/(1-x) where G(k) = 1 + (1-x)/(1-x*k)/(1-x/(x+(1-x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 21 2013
G.f.: (G(0)-1)*x/(1-x^2) where G(k) = 1 + 1/(1-k*x)/(1-x/(x+1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Feb 06 2013
G.f.: x/(1-x)/(1-x*Q(0)), where Q(k) = 1 + x/(1 - x + x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
E.g.f. A(x) satisfies: A'(x) = A(x) + exp(exp(x)-1). - Geoffrey Critzer, Feb 04 2014
G.f.: (x/(1 - x)) * Sum_{i>=0} x^i / Product_{j=1..i} (1 - j*x). - Ilya Gutkovskiy, Jun 05 2017
a(n) ~ Bell(n) / (n/LambertW(n) - 1). - Vaclav Kotesovec, Jul 28 2021
Comments