cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A214670 Triangle, read by rows of n*(n+1)/2 terms, where row n equals the coefficients in the series reversion of the function G(x,n)-1 such that: x = Sum_{m>=1} 1/G(x,n)^(n*m) * Product_{k=1..m} (1 - 1/G(x,n)^k), for n>=1.

Original entry on oeis.org

1, 1, -1, -1, 1, -2, -1, 4, 4, 1, 1, -3, 0, 11, 1, -30, -42, -26, -8, -1, 1, -4, 2, 20, -19, -100, 3, 403, 808, 861, 584, 262, 76, 13, 1, 1, -5, 5, 30, -65, -191, 378, 1557, 103, -8551, -23911, -37958, -41831, -34156, -21179, -10015, -3571, -933, -169, -19, -1
Offset: 1

Views

Author

Paul D. Hanna, Jul 25 2012

Keywords

Comments

The row sums are a signed version of A005014. [From _Olivier Gérard_, Jun 26 2012, in an email to the seqfan list, which suggested that the g.f. A(x,y) is a generalization of the g.f. for A005014.]

Examples

			Consider the family of power series G(x,n) that satisfy:
x = Sum_{m>=1} 1/G(x,n)^(n*m) * Product_{k=1..m} (1 - 1/G(x,n)^k).
Examples of sequences with g.f. G(x,n) are:
n=2: A001002 = [1, 1, 1, 3, 10, 38, 154, 654, 2871, 12925, ...];
n=3: A181997 = [1, 1, 2, 9, 46, 259, 1539, 9484, 59961, ...];
n=4: A181998 = [1, 1, 3, 18, 124, 935, 7443, 61510, 522467, ...];
n=5: A209441 = [1, 1, 4, 30, 260, 2463, 24656, 256493, 2745149, ...];
n=6: A209442 = [1, 1, 5, 45, 470, 5365, 64766, 813012, 10505163, ...]; ...
Observe that Series_Reversion( G(x,n) - 1 ) is given by the polynomials:
n=1: x;
n=2: x - x^2 - x^3;
n=3: x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6;
n=4: x - 3*x^2 + 11*x^4 + x^5 - 30*x^6 - 42*x^7 - 26*x^8 - 8*x^9 - x^10;
n=5: x - 4*x^2 + 2*x^3 + 20*x^4 - 19*x^5 - 100*x^6 + 3*x^7 + 403*x^8 + 808*x^9 + 861*x^10 + 584*x^11 + 262*x^12 + 76*x^13 + 13*x^14 + x^15; ...
This triangle of coefficients in the above polynomials begins:
[1];
[1, -1, -1];
[1, -2, -1, 4, 4, 1];
[1, -3, 0, 11, 1, -30, -42, -26, -8, -1];
[1, -4, 2, 20, -19, -100, 3, 403, 808, 861, 584, 262, 76, 13, 1];
[1, -5, 5, 30, -65, -191, 378, 1557, 103, -8551, -23911, -37958, -41831, -34156, -21179, -10015, -3571, -933, -169, -19, -1];
[1, -6, 9, 40, -145, -261, 1384, 2897, -8980, -38710, -14146, 258401, 990407, 2170834, 3426095, 4198850, 4137440, 3336534, 2220430, 1221799, 554027, 205250, 61206, 14351, 2550, 323, 26, 1];
[1, -7, 14, 49, -266, -245, 3325, 2596, -36710, -70556, 281645, 1413916, 1184890, -10255248, -54012830, -156371880, -329973512, -552895722, -765517470, -895408431, -896614676, -774834055, -580511469, -377792286, -213512611, -104550572, -44163315, -15985147, -4910774, -1263620, -267378, -45321, -5918, -559, -34, -1]; ...
		

Crossrefs

Cf. A214690 (variant).

Programs

  • PARI
    {T(n,k)=local(Axy=x*y);Axy=sum(m=1,n,-x^m*prod(j=1,m,(1-(1+y)^j)/(1-x*(1+y)^j)+x*O(x^n)));polcoeff(polcoeff(Axy,n,x),k,y)}
    {for(n=1,10,for(k=1,n*(n+1)/2,print1(T(n,k),", "));print(""))}
    
  • PARI
    {a(n,p)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(p*m)*prod(k=1, m, 1-1/Ser(A)^k)), #A-1)); A[n+1]}
    {for(n=1,8,Tn=Vec(serreverse(sum(m=1,n*(n+1)/2,a(m,n)*x^m)+x*O(x^(n*(n+1)/2))));for(k=1,n*(n+1)/2,print1(Tn[k],", "));print(""))}

Formula

G.f.: A(x,y) = Sum_{n>=1} -x^n * Product_{k=1..n} (1 - (1+y)^k) / (1 - x*(1+y)^k).
G.f. for row n is R(y,n) = Sum_{k=1..n*(n+1)/2} y^k*T(n,k) defined by:
A(x,y) = Sum_{n>=1} x^n * R(y,n) such that:
R(y,n) = Series_Reversion( G(y,n) - 1 ) where G(y,n) satisfies:
y = Sum_{m>=1} 1/G(y,n)^(n*m) * Product_{k=1..m} (1 - 1/G(y,n)^k), for n>=1.
Row polynomials R(y,n) satisfy:
(1) R(1,n) = (-1)^(n-1) * A005014(n) for n>=1.
(2) R(-1,n) = 1 for n>=1.
(3) R'(-1,n) = 0 for n>1.
(4) R'(1,n) = A214669(n) for n>=1.

A259970 Triangle read by rows: coefficients eta(n,k) arising from the study of completely transitive graphs on n nodes.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 6, 28, 42, 21, 91, 510, 1050, 945, 315, 2820, 18631, 48360, 61845, 39060, 9765, 177661, 1351413, 4220433, 6942915, 6357015, 3075975, 615195
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2015

Keywords

Examples

			Triangle begins:
1,
0,1,
1,3,3,
6,28,42,21,
91,510,1050,945,315,
2820,18631,48360,61845,39060,9765,
177661,1351413,4220433,6942915,6357015,3075975,615195,
...
		

Crossrefs

Diagonals include A005327, A005328, A005329.
Row sums are A005014.

A214691 G.f.: A(x) = Sum_{n>=0} x^n * Product_{k=1..n} (2^(2*k-1) - 1) / (1 + 2^(2*k-1)*x).

Original entry on oeis.org

1, 1, 5, 151, 19025, 9702751, 19851828545, 162586475783551, 5327308465523832065, 698250320576208668759551, 366082867573618138109269955585, 767730685732013278335855487355082751, 6440190236715680978727827356359771295535105
Offset: 0

Views

Author

Paul D. Hanna, Jul 26 2012

Keywords

Comments

A variant of A005014. Equals row sums (unsigned) of triangle A214690.

Crossrefs

Cf. A005014 (variant), A214690.

Programs

  • PARI
    {a(n)=if(n==0,1,2*(4^(n-1)-1)*a(n-1) - (-1)^n)}
    
  • PARI
    {a(n)=local(A=x); A=sum(m=0, n, x^m*prod(j=1, m, (2^(2*j-1)-1)/(1+x*2^(2*j-1))+x*O(x^n))); polcoeff(A, n, x)}
    for(n=0, 20, print1(a(n), ", "));

Formula

a(n) = 2*(4^(n-1) - 1)*a(n-1) - (-1)^n for n>0 with a(0)=1.
Showing 1-3 of 3 results.