1, 1, -2, -3, -1, 1, -4, -2, 22, 49, 49, 27, 8, 1, 1, -6, 3, 61, 15, -567, -1946, -3607, -4489, -4015, -2640, -1274, -441, -104, -15, -1, 1, -8, 12, 108, -218, -1938, -834, 27124, 136919, 393601, 809873, 1288950, 1646268, 1720788, 1487263, 1067345, 635682, 312646
Offset: 1
Consider the family of power series G(x,n) that satisfy:
x = Sum_{m>=1} 1/G(x,n)^(2*n*m) * Product_{k=1..m} (1 - 1/G(x,n)^(2*k-1)).
Examples of sequences with g.f. G(x,n) are:
n=2: A214692 = [1, 1, 2, 11, 71, 515, 3997, 32488, 273009, ...];
n=3: A214693 = [1, 1, 4, 34, 338, 3691, 42623, 510949, 6289912, ...];
n=4: A214694 = [1, 1, 6, 69, 929, 13692, 213402, 3456450, ...];
n=5: A214695 = [1, 1, 8, 116, 1972, 36682, 722098, 14784834, ...]; ...
Observe that Series_Reversion(G(x,n) - 1) is given by the polynomials:
n=1: x;
n=2: x - 2*x^2 - 3*x^3 - x^4;
n=3: x - 4*x^2 - 2*x^3 + 22*x^4 + 49*x^5 + 49*x^6 + 27*x^7 + 8*x^8 + x^9;
n=4: x - 6*x^2 + 3*x^3 + 61*x^4 + 15*x^5 - 567*x^6 - 1946*x^7 - 3607*x^8 - 4489*x^9 - 4015*x^10 - 2640*x^11 - 1274*x^12 - 441*x^13 - 104*x^14 - 15*x^15 - x^16; ...
This triangle of coefficients in the above polynomials begins:
[1];
[1, -2, -3, -1];
[1, -4, -2, 22, 49, 49, 27, 8, 1];
[1, -6, 3, 61, 15, -567, -1946, -3607, -4489, -4015, -2640, -1274, -441, -104, -15, -1];
[1, -8, 12, 108, -218, -1938, -834, 27124, 136919, 393601, 809873, 1288950, 1646268, 1720788, 1487263, 1067345, 635682, 312646, 125761, 40734, 10373, 2001, 275, 24, 1];
[1, -10, 25, 155, -750, -3562, 12824, 113082, 113375, -2035735, -14707914, -59955129, -179036484, -426054391, -841492130, -1412100002, -2043288274, -2574420276, -2842741390, -2762638817, -2368603455, -1793326192, -1198603784, -706071990, -365534676, -165596757, -65259715, -22195440, -6446730, -1576815, -318649, -51799, -6511, -594, -35, -1]; ...