cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005025 Random walks.

Original entry on oeis.org

9, 53, 260, 1156, 4845, 19551, 76912, 297275, 1134705, 4292145, 16128061, 60304951, 224660626, 834641671, 3094322026, 11453607152, 42344301686, 156404021389, 577291806894, 2129654436910, 7853149169635, 28949515515376, 106692395098433, 393137817645838
Offset: 1

Views

Author

Keywords

Comments

Number of walks of length 2n+9 in the path graph P_10 from one end to the other one. - Emeric Deutsch, Apr 02 2004

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    I:=[9,53,260,1156,4845]; [n le 5 select I[n] else 9*Self(n-1)-28*Self(n-2)+35*Self(n-3)-15*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Jun 20 2017
  • Maple
    a:=k->sum(binomial(9+2*k,11*j+k-2),j=ceil((2-k)/11)..floor((11+k)/11))-sum(binomial(9+2*k,11*j+k-1),j=ceil((1-k)/11)..floor((10+k)/11)): seq(a(k),k=1..28);
    A005025:=-(9-28*z+35*z**2-15*z**3+z**4)/(-1+9*z-28*z**2+35*z**3-15*z**4+z**5); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{9, -28, 35, -15, 1}, {9, 53, 260, 1156, 4845}, 25] (* Vincenzo Librandi, Jun 20 2017 *)

Formula

From Emeric Deutsch, Apr 02 2004: (Start)
G.f.: 1/(1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5) - 1.
a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5). (End)
a(k) = Sum_{j=-infinity..infinity} (binomial(9+2*k, 11j+k-2) - binomial(9+2*k, 11j+k-1)) (a finite sum).