cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005042 Primes formed by the initial digits of the decimal expansion of Pi.

Original entry on oeis.org

3, 31, 314159, 31415926535897932384626433832795028841
Offset: 1

Views

Author

Keywords

Comments

The next term consists of the first 16208 digits of Pi and is too large to show here (see A060421). Ed T. Prothro found this probable prime in 2001.
A naive probabilistic argument suggests that the sequence is infinite. - Michael Kleber, Jun 23 2004

References

  • M. Gardner, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A060421 for further terms.

Programs

  • Maple
    Digits := 130; n0 := evalf(Pi); for i from 1 to 120 do t1 := trunc(10^i*n0); if isprime(t1) then print(t1); fi; od:
  • Mathematica
    a = {}; Do[k = Floor[Pi 10^n]; If[PrimeQ[k], AppendTo[a, k]], {n, 0, 160}]; a (* Artur Jasinski, Mar 26 2008 *)
    nn=1000;With[{pidigs=RealDigits[Pi,10,nn][[1]]},Select[Table[FromDigits[ Take[pidigs,n]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Sep 26 2012 *)
  • PARI
    c=Pi;for(k=0,precision(c),isprime(c\.1^k) & print1(c\.1^k,",")) \\ - M. F. Hasler, Sep 01 2013

Formula

a(n) = floor(10^(A060421(n)-1)*A000796), where A000796 is the constant Pi = 3.14159... . - M. F. Hasler, Sep 02 2013