cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005045 Number of restricted 3 X 3 matrices with row and column sums n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 17, 25, 37, 51, 70, 92, 121, 153, 194, 240, 296, 358, 433, 515, 612, 718, 841, 975, 1129, 1295, 1484, 1688, 1917, 2163, 2438, 2732, 3058, 3406, 3789, 4197, 4644, 5118, 5635, 6183, 6777, 7405, 8084, 8800, 9571, 10383, 11254
Offset: 0

Views

Author

Keywords

Comments

More precisely, consider 3 X 3 matrices with entries chosen from {0, 1, ..., n-1}, in which each row and column sums to n, where n >= 2. Then a(n) is the number of equivalence classes of such matrices under permutions of rows and columns and transpositions.

Examples

			a(2) = 1:
  110
  101
  011
a(3) = 3:
  111 210 210
  111 102 111
  111 021 012
		

References

  • E. J. Morgan, On 3 X 3 matrices with constant row and column sum, Abstract 763-05-13, Notices Amer. Math. Soc., 26 (1979), page A-27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002817 for another version.

Programs

  • Maple
    A005045:=-z**2*(-z**5+z**6-z**3+z+1)/((z**2+1)*(z**2+z+1)*(z+1)**2*(z-1)**5); # conjectured by Simon Plouffe in his 1992 dissertation; see formula lines here for the proof of correctness
  • Mathematica
    a[n_] := Block[{k = Floor[(n + 2)/3]}, Sum[Sum[Sum[If[m + r == i/2, Floor[(n - 2*i + m + 2)/2], n - 2*i + m + 1], {r, 0, Floor[i/2 - m]}], {m, Max[2*i - n, 0], Floor[i/2]}], {i, 1, n - k}]]; Table[a[n], {n, 0, 46}] (* Peter Pein, May 13 2008 *)
    LinearRecurrence[{2,0,-1,0,-2,2,0,1,0,-2,1},{0,0,1,3,6,10,17,25,37,51,70},50] (* Harvey P. Dale, Nov 15 2018 *)
  • PARI
    A005045(n)={sum( i=1,n-(n+2)\3, sum( m=max(0,2*i-n),i\2, sum( r=0,i\2-m, if( m+r!=i/2, n-2*i+m+1, (n-2*i+m+2)\2))))} \\ M. F. Hasler, Version 1, May 13 2008
    
  • PARI
    A005045(n)={sum( i=1,(2*n)\3, sum( m=max(0,2*i-n),i\2, (n-2*i+m+1)*((i+1)\2-m)+(i%2==0)*(n-2*i+m+2)\2))} \\ M. F. Hasler, Version 2, much faster, May 13 2008
    
  • PARI
    concat(vector(2), Vec(x^2*(1 + x - x^3 - x^5 + x^6) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Apr 22 2017

Formula

Let n = 3k, 3k-1 or 3k-2 according as n == 0, 2 or 1 mod 3, for n >= 3. Then a(n) = Sum_{i=1..n-k} Sum_{m=max(0,2i-n)..floor(i/2)} Sum_{r=0..floor(i/2)-m} c(i,m,r), where c(i,m,r) = n-2i+m+1 when m+r != i/2, or = floor((n-2i+m+2)/2) when m+r = i/2. [Typos corrected by Peter Pein, May 13 2008]
G.f.: -x^2*(-x^5+x^6-x^3+x+1)/((x^2+1)*(x^2+x+1)*(x+1)^2*(x-1)^5). This was conjectured by Simon Plouffe in his 1992 dissertation and is now known to be correct, although it may be that all the details of the proof have not been written down. See the Mathar link for details.

Extensions

Edited by N. J. A. Sloane, May 12 2008, May 13 2008
More terms from Peter Pein, May 13 2008