A005070 Sum of primes == 1 (mod 3) dividing n.
0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 13, 7, 0, 0, 0, 0, 19, 0, 7, 0, 0, 0, 0, 13, 0, 7, 0, 0, 31, 0, 0, 0, 7, 0, 37, 19, 13, 0, 0, 7, 43, 0, 0, 0, 0, 0, 7, 0, 0, 13, 0, 0, 0, 7, 19, 0, 0, 0, 61, 31, 7, 0, 13, 0, 67, 0, 0, 7, 0, 0, 73, 37, 0, 19, 7, 13, 79, 0, 0, 0, 0, 7, 0, 43, 0, 0, 0, 0, 20, 0, 31, 0, 19, 0, 97, 7, 0, 0, 0, 0, 103, 13, 7, 0, 0, 0, 109, 0, 37
Offset: 1
Keywords
Examples
For n = 5, a(5) = 0 as 5 modulo 3 = 2. For n = 49 = 7*7, a(49) = 7 as 7 modulo 3 = 1, and each such prime is counted only once. For n = 91 = 7*13, a(91) = 7+13 = 20, as both primes are of the form 3k+1. For n = 10001 = 73*137, only 73 is of the form 3k+1, thus a(10001) = 73.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
Programs
-
Mathematica
Table[DivisorSum[n, # &, And[PrimeQ@ #, Mod[#, 3] == 1] &], {n, 111}] (* Michael De Vlieger, May 12 2017 *) f[p_, e_] := If[Mod[p, 3] == 1, p, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
-
Python
from sympy import factorint, primefactors def a028234(n): f = factorint(n) m = min(f) return 1 if n==1 else n/(m**f[m]) def a020639(n): return min(primefactors(n)) if n>1 else 1 def a(n): return 0 if n==1 else a(a028234(n)) + a020639(n)*(1*(a020639(n)%3==1)) # Indranil Ghosh, May 12 2017
-
Scheme
(define (A005070 n) (if (= 1 n) 0 (+ (if (= 1 (modulo (A020639 n) 3)) (A020639 n) 0) (A005070 (A028234 n)))))
Formula
Additive with a(p^e) = p if p == 1 (mod 3), 0 otherwise.
a(1) = 0; for n > 1, a(n) = a(A028234(n)) + A020639(n)*[A020639(n) == 1 (mod 3)]. (Here [] is the Iverson bracket, giving in this case 1 whenever the smallest prime is of the form 3k+1, and 0 otherwise.) - Antti Karttunen, May 12 2017
Extensions
More terms and examples from Antti Karttunen, May 12 2017