cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005070 Sum of primes == 1 (mod 3) dividing n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 13, 7, 0, 0, 0, 0, 19, 0, 7, 0, 0, 0, 0, 13, 0, 7, 0, 0, 31, 0, 0, 0, 7, 0, 37, 19, 13, 0, 0, 7, 43, 0, 0, 0, 0, 0, 7, 0, 0, 13, 0, 0, 0, 7, 19, 0, 0, 0, 61, 31, 7, 0, 13, 0, 67, 0, 0, 7, 0, 0, 73, 37, 0, 19, 7, 13, 79, 0, 0, 0, 0, 7, 0, 43, 0, 0, 0, 0, 20, 0, 31, 0, 19, 0, 97, 7, 0, 0, 0, 0, 103, 13, 7, 0, 0, 0, 109, 0, 37
Offset: 1

Views

Author

Keywords

Examples

			For n = 5, a(5) = 0 as 5 modulo 3 = 2.
For n = 49 = 7*7, a(49) = 7 as 7 modulo 3 = 1, and each such prime is counted only once.
For n = 91 = 7*13, a(91) = 7+13 = 20, as both primes are of the form 3k+1.
For n = 10001 = 73*137, only 73 is of the form 3k+1, thus a(10001) = 73.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, And[PrimeQ@ #, Mod[#, 3] == 1] &], {n, 111}] (* Michael De Vlieger, May 12 2017 *)
    f[p_, e_] := If[Mod[p, 3] == 1, p, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • Python
    from sympy import factorint, primefactors
    def a028234(n):
        f = factorint(n)
        m = min(f)
        return 1 if n==1 else n/(m**f[m])
    def a020639(n): return min(primefactors(n)) if n>1 else 1
    def a(n): return 0 if n==1 else a(a028234(n)) + a020639(n)*(1*(a020639(n)%3==1)) # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A005070 n) (if (= 1 n) 0 (+ (if (= 1 (modulo (A020639 n) 3)) (A020639 n) 0) (A005070 (A028234 n)))))
    

Formula

Additive with a(p^e) = p if p == 1 (mod 3), 0 otherwise.
a(1) = 0; for n > 1, a(n) = a(A028234(n)) + A020639(n)*[A020639(n) == 1 (mod 3)]. (Here [] is the Iverson bracket, giving in this case 1 whenever the smallest prime is of the form 3k+1, and 0 otherwise.) - Antti Karttunen, May 12 2017

Extensions

More terms and examples from Antti Karttunen, May 12 2017