cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005088 Number of primes = 1 mod 3 dividing n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Keywords

Comments

The first instance of a(n)=2 is for n=91; the first instance of a(n)=3 is for n=1729. 1729 is famously Ramanujan's taxi cab number -- see A001235. - Harvey P. Dale, Jun 25 2013

Crossrefs

Cf. A121940 (first number having n such factors).

Programs

Formula

Additive with a(p^e) = 1 if p = 1 (mod 3), 0 otherwise.
From Antti Karttunen, Jul 10 2017: (Start)
a(1) = 0; for n > 1, ((A020639(n) mod 3) mod 2) + a(A028234(n)).
a(n) = A001221(n) - A005090(n) - A079978(n).
(End)

A005074 Sum of primes = 2 mod 3 dividing n.

Original entry on oeis.org

0, 2, 0, 2, 5, 2, 0, 2, 0, 7, 11, 2, 0, 2, 5, 2, 17, 2, 0, 7, 0, 13, 23, 2, 5, 2, 0, 2, 29, 7, 0, 2, 11, 19, 5, 2, 0, 2, 0, 7, 41, 2, 0, 13, 5, 25, 47, 2, 0, 7, 17, 2, 53, 2, 16, 2, 0, 31, 59, 7, 0, 2, 0, 2, 5, 13, 0, 19, 23, 7, 71, 2, 0, 2, 5, 2, 11, 2, 0, 7, 0, 43, 83, 2, 22, 2, 29, 13, 89, 7, 0, 25, 0, 49, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, # &, And[PrimeQ@ #, Mod[#, 3] == 2] &] &, 95] (* Michael De Vlieger, Jul 11 2017 *)
    f[p_, e_] := If[Mod[p, 3] == 2, p, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%3) == 2, p)); \\ Michel Marcus, Jul 11 2017
  • Scheme
    (define (A005074 n) (if (= 1 n) 0 (+ (if (= 2 (modulo (A020639 n) 3)) (A020639 n) 0) (A005074 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
    

Formula

Additive with a(p^e) = p if p = 2 (mod 3), 0 otherwise.
a(n) = A008472(n) - A005070(n) - 3*A079978(n). - Antti Karttunen, Jul 10 2017

Extensions

More terms from Antti Karttunen, Jul 10 2017

A005071 Sum of squares of primes = 1 mod 3 dividing n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 169, 49, 0, 0, 0, 0, 361, 0, 49, 0, 0, 0, 0, 169, 0, 49, 0, 0, 961, 0, 0, 0, 49, 0, 1369, 361, 169, 0, 0, 49, 1849, 0, 0, 0, 0, 0, 49, 0, 0, 169, 0, 0, 0, 49, 361, 0, 0, 0, 3721, 961, 49, 0, 169, 0, 4489, 0, 0, 49, 0, 0, 5329, 1369, 0, 361, 49, 169, 6241, 0, 0, 0, 0, 49, 0, 1849, 0, 0, 0, 0, 218
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{sp=Select[Prime[Range[100]],Mod[#,3]==1&]},Table[Total[ Select[ sp, Divisible[ n,#]&]^2],{n,70}]] (* Harvey P. Dale, Dec 19 2014 *)
    f[p_, e_] := If[Mod[p, 3] == 1, p^2, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • Scheme
    (define (A005071 n) (if (= 1 n) 0 (+ (A000290 (if (= 1 (modulo (A020639 n) 3)) (A020639 n) 0)) (A005071 (A028234 n))))) ;; Antti Karttunen, Jul 09 2017

Formula

Additive with a(p^e) = p^2 if p = 1 (mod 3), 0 otherwise.

Extensions

More terms from Antti Karttunen, Jul 09 2017

A005072 Sum of cubes of primes = 1 mod 3 dividing n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 343, 0, 0, 0, 0, 0, 2197, 343, 0, 0, 0, 0, 6859, 0, 343, 0, 0, 0, 0, 2197, 0, 343, 0, 0, 29791, 0, 0, 0, 343, 0, 50653, 6859, 2197, 0, 0, 343, 79507, 0, 0, 0, 0, 0, 343, 0, 0, 2197, 0, 0, 0, 343, 6859, 0, 0, 0, 226981, 29791, 343, 0, 2197, 0, 300763, 0, 0, 343, 0, 0, 389017, 50653, 0, 6859, 343, 2197, 493039
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 3] == 1, p^3, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%3) == 1, p^3)); \\ Michel Marcus, Jul 10 2017
  • Scheme
    (define (A005072 n) (if (= 1 n) 0 (+ (A000578 (if (= 1 (modulo (A020639 n) 3)) (A020639 n) 0)) (A005072 (A028234 n))))) ;; Antti Karttunen, Jul 09 2017
    

Formula

Additive with a(p^e) = p^3 if p = 1 (mod 3), 0 otherwise.

Extensions

More terms from Antti Karttunen, Jul 09 2017

A005073 Sum of 4th powers of primes = 1 mod 3 dividing n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2401, 0, 0, 0, 0, 0, 28561, 2401, 0, 0, 0, 0, 130321, 0, 2401, 0, 0, 0, 0, 28561, 0, 2401, 0, 0, 923521, 0, 0, 0, 2401, 0, 1874161, 130321, 28561, 0, 0, 2401, 3418801, 0, 0, 0, 0, 0, 2401, 0, 0, 28561, 0, 0, 0, 2401, 130321, 0, 0, 0, 13845841, 923521, 2401, 0, 28561, 0, 20151121, 0, 0, 2401, 0, 0, 28398241, 1874161
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 3] == 1, p^4, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%3) == 1, p^4)); \\ Michel Marcus, Jul 10 2017
  • Scheme
    (define (A005073 n) (if (= 1 n) 0 (+ (A000583 (if (= 1 (modulo (A020639 n) 3)) (A020639 n) 0)) (A005073 (A028234 n))))) ;; Antti Karttunen, Jul 09 2017
    

Formula

Additive with a(p^e) = p^4 if p = 1 (mod 3), 0 otherwise.

Extensions

More terms from Antti Karttunen, Jul 09 2017
Showing 1-5 of 5 results.