cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005073 Sum of 4th powers of primes = 1 mod 3 dividing n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2401, 0, 0, 0, 0, 0, 28561, 2401, 0, 0, 0, 0, 130321, 0, 2401, 0, 0, 0, 0, 28561, 0, 2401, 0, 0, 923521, 0, 0, 0, 2401, 0, 1874161, 130321, 28561, 0, 0, 2401, 3418801, 0, 0, 0, 0, 0, 2401, 0, 0, 28561, 0, 0, 0, 2401, 130321, 0, 0, 0, 13845841, 923521, 2401, 0, 28561, 0, 20151121, 0, 0, 2401, 0, 0, 28398241, 1874161
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 3] == 1, p^4, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%3) == 1, p^4)); \\ Michel Marcus, Jul 10 2017
  • Scheme
    (define (A005073 n) (if (= 1 n) 0 (+ (A000583 (if (= 1 (modulo (A020639 n) 3)) (A020639 n) 0)) (A005073 (A028234 n))))) ;; Antti Karttunen, Jul 09 2017
    

Formula

Additive with a(p^e) = p^4 if p = 1 (mod 3), 0 otherwise.

Extensions

More terms from Antti Karttunen, Jul 09 2017