A005073 Sum of 4th powers of primes = 1 mod 3 dividing n.
0, 0, 0, 0, 0, 0, 2401, 0, 0, 0, 0, 0, 28561, 2401, 0, 0, 0, 0, 130321, 0, 2401, 0, 0, 0, 0, 28561, 0, 2401, 0, 0, 923521, 0, 0, 0, 2401, 0, 1874161, 130321, 28561, 0, 0, 2401, 3418801, 0, 0, 0, 0, 0, 2401, 0, 0, 28561, 0, 0, 0, 2401, 130321, 0, 0, 0, 13845841, 923521, 2401, 0, 28561, 0, 20151121, 0, 0, 2401, 0, 0, 28398241, 1874161
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
Programs
-
Mathematica
f[p_, e_] := If[Mod[p, 3] == 1, p^4, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%3) == 1, p^4)); \\ Michel Marcus, Jul 10 2017
-
Scheme
(define (A005073 n) (if (= 1 n) 0 (+ (A000583 (if (= 1 (modulo (A020639 n) 3)) (A020639 n) 0)) (A005073 (A028234 n))))) ;; Antti Karttunen, Jul 09 2017
Formula
Additive with a(p^e) = p^4 if p = 1 (mod 3), 0 otherwise.
Extensions
More terms from Antti Karttunen, Jul 09 2017