cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005081 Sum of 4th powers of primes = 1 mod 4 dividing n.

Original entry on oeis.org

0, 0, 0, 0, 625, 0, 0, 0, 0, 625, 0, 0, 28561, 0, 625, 0, 83521, 0, 0, 625, 0, 0, 0, 0, 625, 28561, 0, 0, 707281, 625, 0, 0, 0, 83521, 625, 0, 1874161, 0, 28561, 625, 2825761, 0, 0, 0, 625, 0, 0, 0, 0, 625, 83521, 28561, 7890481, 0, 625, 0, 0, 707281, 0, 625, 13845841, 0, 0, 0, 29186, 0, 0, 83521, 0, 625, 0, 0, 28398241
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, #^4 &, And[PrimeQ@ #, Mod[#, 4] == 1] &] &, 73] (* Michael De Vlieger, Jul 11 2017 *)
    f[p_, e_] := If[Mod[p, 4] == 1, p^4, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%4) == 1, p^4)); \\ Michel Marcus, Jul 11 2017
  • Scheme
    (define (A005081 n) (if (= 1 n) 0 (+ (if (= 1 (modulo (A020639 n) 4)) (A000583 (A020639 n)) 0) (A005081 (A028234 n))))) ;; Antti Karttunen, Jul 11 2017
    

Formula

Additive with a(p^e) = p^4 if p = 1 (mod 4), 0 otherwise.
a(n) = A005065(n) - A005085(n) - 16*A059841(n). - Antti Karttunen, Jul 11 2017

Extensions

More terms from Antti Karttunen, Jul 11 2017