A005081 Sum of 4th powers of primes = 1 mod 4 dividing n.
0, 0, 0, 0, 625, 0, 0, 0, 0, 625, 0, 0, 28561, 0, 625, 0, 83521, 0, 0, 625, 0, 0, 0, 0, 625, 28561, 0, 0, 707281, 625, 0, 0, 0, 83521, 625, 0, 1874161, 0, 28561, 625, 2825761, 0, 0, 0, 625, 0, 0, 0, 0, 625, 83521, 28561, 7890481, 0, 625, 0, 0, 707281, 0, 625, 13845841, 0, 0, 0, 29186, 0, 0, 83521, 0, 625, 0, 0, 28398241
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Array[DivisorSum[#, #^4 &, And[PrimeQ@ #, Mod[#, 4] == 1] &] &, 73] (* Michael De Vlieger, Jul 11 2017 *) f[p_, e_] := If[Mod[p, 4] == 1, p^4, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%4) == 1, p^4)); \\ Michel Marcus, Jul 11 2017
-
Scheme
(define (A005081 n) (if (= 1 n) 0 (+ (if (= 1 (modulo (A020639 n) 4)) (A000583 (A020639 n)) 0) (A005081 (A028234 n))))) ;; Antti Karttunen, Jul 11 2017
Formula
Additive with a(p^e) = p^4 if p = 1 (mod 4), 0 otherwise.
Extensions
More terms from Antti Karttunen, Jul 11 2017