cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005086 Number of Fibonacci numbers 1,2,3,5,... dividing n.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 3, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 2, 1, 4, 1, 3, 2, 3, 2, 3, 1, 2, 3, 4, 1, 4, 1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 3, 3, 2, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Keywords

Comments

Indices of records are in A129655. - R. J. Mathar, Nov 02 2007

Crossrefs

Programs

  • Maple
    with(combinat): for n from 1 to 200 do printf(`%d,`,sum(floor(n/fibonacci(k))-floor((n-1)/fibonacci(k)), k=2..15)) od:
  • Mathematica
    f[n_] := Block[{k = 1}, While[Fibonacci[k] <= n, k++ ]; Count[ Mod[n, Array[ Fibonacci, k - 1]], 0] - 1]; Array[f, 105] (* Robert G. Wilson v, Dec 10 2006 *)
  • PARI
    isfib(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8))
    a(n)=sumdiv(n,d,isfib(d)) \\ Charles R Greathouse IV, Nov 06 2014
    
  • Python
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A005086(n): return sum(1 for d in divisors(n,generator=True) if is_square(m:=5*d**2-4) or is_square(m+8)) # Chai Wah Wu, Mar 30 2023
    
  • Python
    from itertools import count, takewhile
    def F(f=1, g=1):
        while True:
            f, g = g, f+g;
            yield f
    def a(n):
        return sum(1 for f in takewhile(lambda x: x<=n, F()) if n%f == 0)
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Apr 03 2023

Formula

a(n) <= A072649(n). - Robert G. Wilson v, Dec 10 2006
Equals A051731 * A010056. - Gary W. Adamson, Nov 06 2007
G.f.: Sum_{n>=2} x^F(n)/(1-x^F(n)) where F(n) = A000045(n). - Joerg Arndt, Jan 06 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A079586 - 1 = 2.359885... . - Amiram Eldar, Dec 31 2023

Extensions

More terms from James Sellers, Feb 19 2001
Incorrect comment removed by Charles R Greathouse IV, Nov 06 2014