cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A300837 a(n) is the total number of terms (1-digits) in Zeckendorf representation of all divisors of n.

Original entry on oeis.org

1, 2, 2, 4, 2, 5, 3, 5, 4, 5, 3, 10, 2, 6, 5, 7, 4, 9, 4, 10, 5, 6, 3, 13, 5, 5, 7, 11, 3, 13, 4, 10, 8, 6, 6, 16, 3, 8, 5, 14, 4, 12, 4, 11, 10, 8, 3, 18, 6, 11, 9, 10, 5, 16, 5, 14, 7, 6, 4, 23, 4, 8, 9, 13, 6, 16, 5, 10, 7, 14, 4, 23, 4, 8, 12, 12, 8, 13, 4, 20, 10, 9, 5, 23, 9, 9, 8, 17, 2, 22, 6, 12, 8, 6, 8, 24, 3, 12, 13, 19, 5, 15, 4, 14, 13
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2018

Keywords

Examples

			For n=12, its divisors are 1, 2, 3, 4, 6 and 12. Zeckendorf-representations (A014417) of these numbers are 1, 10, 100, 101, 1001 and 10101. Total number of 1's present is 10 (ten), thus a(12) = 10.
		

Crossrefs

Programs

  • PARI
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); };
    A300837(n) = sumdiv(n,d,A007895(d));

Formula

a(n) = Sum_{d|n} A007895(d).
a(n) = A300836(n) + A007895(n).
For all n >=1, a(n) >= A005086(n).

A005092 Sum of Fibonacci numbers 1,2,3,5,... that divide n.

Original entry on oeis.org

1, 3, 4, 3, 6, 6, 1, 11, 4, 8, 1, 6, 14, 3, 9, 11, 1, 6, 1, 8, 25, 3, 1, 14, 6, 16, 4, 3, 1, 11, 1, 11, 4, 37, 6, 6, 1, 3, 17, 16, 1, 27, 1, 3, 9, 3, 1, 14, 1, 8, 4, 16, 1, 6, 61, 11, 4, 3, 1, 11, 1, 3, 25, 11, 19, 6, 1, 37, 4, 8, 1, 14, 1, 3, 9, 3, 1, 19, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(issqr(5*d^2+4) or issqr(5*d^2-4), d, 0)
            , d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 07 2017
  • Mathematica
    nmax = 100; With[{fibs = Fibonacci[Range[2, Floor[Log[nmax*Sqrt[5]] / Log[GoldenRatio]] + 1]]}, Table[Total[Select[fibs, Divisible[n, #1] & ]], {n, 1, nmax}]] (* Vaclav Kotesovec, Apr 29 2019 *)

Formula

G.f.: Sum_{k>=2} F(k)*x^F(k)/(1 - x^F(k)), where F(k) is the k-th Fibonacci number (A000045). - Ilya Gutkovskiy, Jan 06 2017

A293435 a(n) is the number of the proper divisors of n that are Fibonacci numbers (A000045).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 2, 3, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 4, 1, 3, 2, 2, 2, 3, 1, 2, 3, 4, 1, 4, 1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			For n = 55, its proper divisors are [1, 5, 11], of which only two, namely 1 and 5 are in A000045, thus a(55) = 2.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Fibonacci@ Range[2, 40]}, Table[DivisorSum[n, 1 &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    A010056(n) = { my(k=n^2); k+=(k+1)<<2; (issquare(k) || (n>0 && issquare(k-8))) }; \\ This function from Charles R Greathouse IV, Jul 30 2012
    A293435(n) = sumdiv(n,d,(dA010056(d));

Formula

a(n) = Sum_{d|n, dA010056(d).
a(n) = A005086(n) - A010056(n).
G.f.: Sum_{k>=2} x^(2*Fibonacci(k)) / (1 - x^Fibonacci(k)). - Ilya Gutkovskiy, Apr 14 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A079586 - 1 = 2.359885... . - Amiram Eldar, Jul 05 2025

A304092 Number of Lucas numbers (A000032: 2, 1, 3, 4, 7, 11, ...) dividing n.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 2, 3, 2, 2, 2, 4, 1, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 4, 1, 2, 2, 4, 2, 3, 1, 3, 3, 2, 2, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 2, 4, 2, 2, 2, 3, 1, 4, 2, 4, 2, 3, 1, 4, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 5, 1, 2, 2, 4, 3, 3, 1, 3, 2, 2, 1, 5, 1, 2, 3, 4, 1, 4, 2, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A102460(d).
a(n) = A304091(n) + A102460(n).
a(n) = A304094(n) + A059841(n) = A304096(n) + A059841(n) + A079978(n) + 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 + 1/2 = 2.462858... . - Amiram Eldar, Dec 31 2023

A054494 Largest Fibonacci factor of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 1, 8, 3, 5, 1, 3, 13, 2, 5, 8, 1, 3, 1, 5, 21, 2, 1, 8, 5, 13, 3, 2, 1, 5, 1, 8, 3, 34, 5, 3, 1, 2, 13, 8, 1, 21, 1, 2, 5, 2, 1, 8, 1, 5, 3, 13, 1, 3, 55, 8, 3, 2, 1, 5, 1, 2, 21, 8, 13, 3, 1, 34, 3, 5, 1, 8, 1, 2, 5, 2, 1, 13, 1, 8, 3, 2, 1, 21, 5, 2, 3, 8, 89, 5, 13, 2, 3, 2, 5, 8, 1, 2, 3, 5
Offset: 1

Views

Author

Henry Bottomley, Apr 04 2000

Keywords

Examples

			a(10)=5 because 1, 2 and 5 are the Fibonacci numbers which divide 10 and 5 is the largest.
		

Crossrefs

Sequences with similar definitions: A047930 (smallest Fibonacci multiple), A280686 (restricted to proper divisors), A280694 (equivalent for Lucas numbers).
Positions of 1's: A147956.

Programs

  • Mathematica
    With[{fibs=Fibonacci[Range[20]]},Table[Max[Select[fibs,Divisible[ n,#]&]],{n,100}]] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    A010056(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8))
    a(n)=fordiv(n,d,if(A010056(n/d), return(n/d))) \\ Charles R Greathouse IV, Nov 05 2014
    
  • Python
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A054494(n): return next(d for d in sorted(divisors(n,generator=True),reverse=True) if is_square(m:=5*d**2-4) or is_square(m+8)) # Chai Wah Wu, May 06 2024

Formula

a(n) = n/A054495(n).

Extensions

Corrected by Harvey P. Dale, Jul 17 2012

A304105 Restricted growth sequence transform of A304104, a filter sequence related to how the divisors of n are expressed in Fibonacci number system.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 5, 6, 7, 4, 5, 8, 2, 9, 4, 10, 11, 12, 11, 8, 6, 9, 13, 14, 15, 4, 16, 17, 5, 18, 11, 8, 19, 20, 9, 21, 13, 22, 4, 23, 11, 24, 25, 26, 27, 28, 5, 29, 30, 31, 32, 8, 33, 34, 6, 35, 36, 9, 11, 37, 25, 22, 12, 38, 39, 40, 33, 41, 16, 42, 25, 43, 11, 44, 45, 46, 47, 18, 11, 48, 49, 50, 51, 52, 53, 54, 19, 55, 2, 56, 9, 57, 22, 9, 58, 59, 13, 60
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ Needs also code from A304101:
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A304104(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(A304101(d)-1))); (m); };
    write_to_bfile(1,rgs_transform(vector(up_to,n,A304104(n))),"b304105.txt");

Formula

For all i, j: a(i) = a(j) => b(i) = b(j), where b can be any of {A000005, A005086, A304096 or A300837} for example.

A038663 [ n/F_2 ] + [ n/F_3 ] + [ n/F_4 ] +..., F_n=Fibonacci numbers.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 13, 16, 18, 21, 22, 25, 27, 29, 32, 35, 36, 39, 40, 43, 46, 48, 49, 53, 55, 58, 60, 62, 63, 67, 68, 71, 73, 76, 78, 81, 82, 84, 87, 91, 92, 96, 97, 99, 102, 104, 105, 109, 110, 113, 115, 118, 119, 122, 125, 128, 130, 132, 133, 137, 138, 140, 143, 146
Offset: 1

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)

Keywords

Examples

			a(15)=[ 15/1 ]+[ 15/2 ]+[ 15/3 ]+[ 15/5 ]+[ 15/8 ]+[ 15/13 ]+[ 15/21 ]+...=32.
		

Crossrefs

Cf. A005086.

Programs

  • Magma
    [&+[Floor(n/Fibonacci(k+2)):k in [0..n]]:n in [1..64]]; // Marius A. Burtea, Jul 16 2019
  • Maple
    with(combinat): for n from 1 to 200 do printf(`%d,`,sum(floor(n/fibonacci(k)), k=2..15)) od:
  • Mathematica
    Table[Sum[Floor[n/Fibonacci[k] ],{k,2,200}],{n,70}] (* Harvey P. Dale, Jul 21 2021 *)
    Table[Sum[Floor[n/Fibonacci[k]], {k, 2, Log[Sqrt[5]*n]/Log[GoldenRatio] + 1}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 30 2021 *)

Formula

G.f.: (1/(1 - x)) * Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)). - Ilya Gutkovskiy, Jul 16 2019
Conjecture: a(n) ~ c * n, where c = A079586 - 1. - Vaclav Kotesovec, Aug 30 2021

Extensions

More terms from Simon Plouffe, who points out that the first differences give A005086
More terms from James Sellers, Feb 19 2001

A304096 Number of Lucas numbers larger than 3 (4, 7, 11, 18, ...) that divide n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

a(n) is the number of the divisors d of n that are of the form d = A000045(k-1) + A000045(k+1), for k >= 3.

Examples

			The divisors of 4 are 1, 2 and 4. Of these only 4 is a Lucas number larger than 3, thus a(4) = 1.
The divisors of 28 are 1, 2, 4, 7, 14 and 28. Of these 4 and 7 are Lucas numbers (A000032) larger than 3, thus a(28) = 2.
		

Crossrefs

Programs

  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304096(n) = sumdiv(n,d,(d>3)*A102460(d));

Formula

a(n) = Sum_{d|n, d>3} A102460(d).
a(n) = A304094(n) - A079978(n) - 1.
a(n) = A304092(n) - A059841(n) - A079978(n) - 1.
a(n) = A007949(A304104(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 - 4/3 = 0.629524... . - Amiram Eldar, Dec 31 2023

A304104 a(n) = Product_{d|n, d>1} prime(A304101(d)-1).

Original entry on oeis.org

1, 2, 2, 6, 2, 20, 3, 12, 10, 20, 3, 420, 2, 30, 20, 60, 11, 300, 11, 420, 12, 30, 5, 4200, 22, 20, 130, 990, 3, 11000, 11, 420, 102, 44, 30, 31500, 5, 242, 20, 10920, 11, 3000, 13, 1170, 1100, 190, 3, 231000, 33, 2420, 506, 420, 19, 66300, 12, 9900, 110, 30, 11, 8085000, 13, 242, 300, 5460, 52, 56100, 19, 660, 130, 19500, 13, 9135000, 11, 290, 4180, 2178, 99
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Cf. A304101, A304102, A304105 (restricted growth sequence transform of this sequence).

Programs

  • PARI
    \\ Needs also code from A304101:
    A304104(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(A304101(d)-1))); (m); };

Formula

a(n) = Product_{d|n, d>1} A000040(A304101(d)-1).
a(n) = (1/2) * A304102(n) * A000040(A304101(n)-1).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A001511(a(n)) = A005086(n).
A007949(a(n)) = A304096(n).

A339461 Number of Fibonacci divisors of n^2 + 1.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 4, 1, 2, 1, 3, 3, 2, 1, 4, 2, 3, 1, 2, 1, 3, 2, 2, 1, 3, 2, 3, 3, 2, 1, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 5, 2, 2, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 3, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 4, 1, 2, 2
Offset: 0

Views

Author

Michel Lagneau, Dec 06 2020

Keywords

Examples

			a(13) = 4 because the divisors of 13^2 + 1 = 170 are {1, 2, 5, 10, 17, 34, 85, 170} with 4 Fibonacci divisors: 1, 2, 5 and 34.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):nn:=100:F:={}:
    for k from 1 to nn do:
      F:=F union {fibonacci(k)}:
    od:
       for n from 0 to 90 do:
        f:=n^2+1:d:=divisors(f):
        lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1):
       od:
  • Mathematica
    Array[DivisorSum[#^2 + 1, 1 &, Or @@ Map[IntegerQ@ Sqrt[#] &, 5 #^2 + 4 {-1, 1}] &] &, 105, 0] (* Michael De Vlieger, Dec 07 2020 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8);
    a(n) = sumdiv(n^2+1, d, isfib(d)); \\ Michel Marcus, Dec 06 2020

Formula

a(A005574(n)) = 1 for n > 2.
a(n) = A005086(A002522(n)). - Michel Marcus, Dec 06 2020
Showing 1-10 of 23 results. Next