cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A300836 a(n) is the total number of terms (1-digits) in Zeckendorf representation of all proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 4, 3, 5, 1, 7, 1, 7, 4, 4, 1, 11, 2, 3, 4, 8, 1, 10, 1, 7, 4, 5, 4, 14, 1, 5, 3, 11, 1, 10, 1, 8, 7, 4, 1, 15, 3, 8, 5, 7, 1, 12, 4, 12, 5, 4, 1, 21, 1, 5, 7, 10, 3, 13, 1, 8, 4, 11, 1, 19, 1, 4, 8, 10, 5, 10, 1, 16, 7, 5, 1, 20, 5, 5, 4, 12, 1, 20, 4, 10, 5, 4, 5, 21, 1, 9, 10, 16, 1, 13, 1, 11, 10
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2018

Keywords

Examples

			For n=12, its proper divisors are 1, 2, 3, 4 and 6. Zeckendorf-representations (A014417) of these numbers are 1, 10, 100, 101 and 1001. Total number of 1's present is 7, thus a(12) = 7.
		

Crossrefs

Programs

  • PARI
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A300836(n) = sumdiv(n,d,(dA007895(d));

Formula

a(n) = Sum_{d|n, dA007895(d).
a(n) = A300837(n) - A007895(n).
a(n) = A001222(A300834(n)).
For all n >=1, a(n) >= A293435(n).

A304102 a(n) = Product_{d|n, dA304101(d)-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 8, 2, 12, 4, 8, 2, 120, 2, 12, 8, 24, 2, 200, 2, 120, 12, 12, 2, 1680, 4, 8, 20, 180, 2, 2000, 2, 120, 12, 44, 12, 12600, 2, 44, 8, 1680, 2, 1200, 2, 180, 200, 20, 2, 42000, 6, 440, 44, 120, 2, 7800, 12, 3960, 44, 12, 2, 3234000, 2, 44, 120, 840, 8, 10200, 2, 264, 20, 3000, 2, 630000, 2, 20, 440, 1452, 18, 2000, 2, 109200, 260, 44, 2, 1386000
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Cf. A304101, A304103 (restricted growth sequence transform of this sequence), A304104.

Programs

  • PARI
    \\ Needs also code from A304101:
    A304102(n) = { my(m=1); fordiv(n,d,if(dA304101(d)-1))); (m); };

Formula

a(n) = Product_{d|n, dA000040(A304101(d)-1).
a(n) = 2*A304104(n) / A000040(A304101(n)-1).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A007814(a(n)) = A293435(n).
A007949(a(n)) = A304095(n).

A293433 a(n) is the number of the proper divisors of n that are Jacobsthal numbers (A001045).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 2, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			For n = 21, whose proper divisors are [1, 3, 7], both 1 and 3 are in A001045, thus a(21) = 2.
		

Crossrefs

Programs

  • Mathematica
    With[{s = LinearRecurrence[{1, 2}, {0, 1}, 24]}, Table[DivisorSum[n, 1 &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    A147612aux(n,i) = if(!(n%2),n,A147612aux((n+i)/2,-i));
    A147612(n) = 0^(A147612aux(n,1)*A147612aux(n,-1));
    A293433(n) = sumdiv(n,d,(dA147612(d));
    
  • Python
    from sympy import divisors
    def A293433(n): return sum(1 for d in divisors(n,generator=True) if d(m-3).bit_length()) # Chai Wah Wu, Apr 18 2025

Formula

a(n) = Sum_{d|n, dA147612(d).
a(n) = A293431(n) - A147612(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=2} 1/A001045(n) = 1.718591611927... . - Amiram Eldar, Jul 05 2025

A304103 Restricted growth sequence transform of A304102, a filter sequence related to the proper divisors of n expressed in Fibonacci number system.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 5, 4, 7, 2, 8, 2, 6, 5, 5, 2, 9, 3, 4, 10, 11, 2, 12, 2, 6, 5, 13, 5, 14, 2, 13, 4, 9, 2, 15, 2, 11, 8, 10, 2, 16, 17, 18, 13, 6, 2, 19, 5, 20, 13, 5, 2, 21, 2, 13, 6, 22, 4, 23, 2, 24, 10, 25, 2, 26, 2, 10, 18, 27, 28, 12, 2, 29, 30, 13, 2, 31, 13, 32, 5, 33, 2, 34, 5, 35, 13, 5, 13, 21, 2, 36, 37, 38, 2, 39, 2, 9, 15
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

For all i, j: a(i) = a(j) => b(i) = b(j), where b can be any of {A000005, A293435, A304095 or A300836} for example.

Crossrefs

Cf. also A300835, A304105, A305800.
Cf. A305793 (analogous filter for base 2).

Programs

  • PARI
    \\ Needs also code from A304101.
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A304102(n) = { my(m=1); fordiv(n,d,if(dA304101(d)-1))); (m); };
    write_to_bfile(1,rgs_transform(vector(up_to,n,A304102(n))),"b304103.txt");

A304091 a(n) is the number of the proper divisors of n that are Lucas numbers (A000032, with 2 included).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 1, 3, 1, 3, 3, 3, 1, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 2, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 4, 2, 3, 1, 4, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 5, 1, 2, 2, 3, 3, 3, 1, 3, 2, 2, 1, 5, 1, 2, 3, 4, 1, 4, 2, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304091(n) = sumdiv(n,d,(dA102460(d));

Formula

a(n) = Sum_{d|n, dA102460(d).
a(n) = A304092(n) - A102460(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/2 + A093540 = 2.462858... . - Amiram Eldar, Jul 05 2025

A304093 a(n) is the number of the proper divisors of n that are Lucas numbers (A000204, with 2 excluded).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 4, 1, 1, 2, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 1, 3, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 1, 2, 2, 3, 2, 1, 2, 2, 1, 1, 4, 1, 1, 3, 3, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

  • PARI
    isA000204(n) = { my(u1=1,u2=3,old_u1); if(n<=2,(n%2),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A304093(n) = sumdiv(n,d,(dA000204(d));

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540. - Amiram Eldar, Jul 05 2025

A293436 a(n) is the sum of the proper divisors of n that are Fibonacci numbers (A000045).

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 3, 4, 8, 1, 6, 1, 3, 9, 11, 1, 6, 1, 8, 4, 3, 1, 14, 6, 16, 4, 3, 1, 11, 1, 11, 4, 3, 6, 6, 1, 3, 17, 16, 1, 27, 1, 3, 9, 3, 1, 14, 1, 8, 4, 16, 1, 6, 6, 11, 4, 3, 1, 11, 1, 3, 25, 11, 19, 6, 1, 37, 4, 8, 1, 14, 1, 3, 9, 3, 1, 19, 1, 16, 4, 3, 1, 27, 6, 3, 4, 11, 1, 11, 14, 3, 4, 3, 6, 14, 1, 3, 4, 8, 1, 40, 1, 24, 30
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			For n = 55, its proper divisors are [1, 5, 11], of which only 1 and 5 are in A000045, thus a(55) = 1 + 5 = 6.
For n = 10946, its proper divisors are [1, 2, 13, 26, 421, 842, 5473], and only 1, 2 and 13 are Fibonacci numbers, thus a(10946) = 1 + 2 + 13 = 16.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Fibonacci@ Range[2, 40]}, Table[DivisorSum[n, # &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    A010056(n) = { my(k=n^2); k+=(k+1)<<2; (issquare(k) || (n>0 && issquare(k-8))) }; \\ This function from Charles R Greathouse IV, Jul 30 2012
    A293436(n) = sumdiv(n,d,(dA010056(d)*d);

Formula

a(n) = Sum_{d|n, dA010056(d)*d.
a(n) = A005092(n) - (A010056(n)*n).
G.f.: Sum_{k>=2} Fibonacci(k) * x^(2*Fibonacci(k)) / (1 - x^Fibonacci(k)). - Ilya Gutkovskiy, Apr 14 2021

A294879 Number of proper divisors of n that are in Perrin sequence, A001608.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 0, 3, 2, 1, 0, 3, 1, 1, 1, 2, 0, 4, 0, 1, 1, 2, 2, 3, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 3, 1, 3, 2, 1, 0, 2, 1, 2, 1, 2, 0, 5, 0, 1, 2, 1, 1, 3, 0, 2, 1, 4, 0, 3, 0, 1, 2, 1, 1, 3, 0, 3, 1, 1, 0, 4, 2, 1, 2, 2, 0, 4, 1, 1, 1, 1, 1, 3, 0, 2, 1, 3, 0, 4, 0, 1, 3, 1, 0, 3, 0, 4, 1, 2, 0, 2, 1, 2, 2, 1, 2, 5, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n = 22, with proper divisors [1, 2, 11], only 2 is in A001608, thus a(22) = 1.
For n = 121, with proper divisors [1, 11], neither of them is in A001608, thus a(121) = 0. Note that this is the first zero not in A008578.
For n = 644, with proper divisors [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644], both 2 and 7 are in A001608, thus a(644) = 2.
		

Crossrefs

Programs

  • PARI
    A001608(n) = if(n<0, 0, polsym(x^3-x-1, n)[n+1]);
    A294878(n) = { my(k=1,v); while((v=A001608(k))A294879(n) = sumdiv(n,d,(dA294878(d));

Formula

a(n) = Sum_{d|n, dA294878(d).
a(n) = A294880(n) - A294878(n).
Showing 1-8 of 8 results.