cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A147612 If n is a Jacobsthal number then 1 else 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 08 2008

Keywords

Comments

a(A001045(n)) = 1; a(A147613(n)) = 0.

Crossrefs

Programs

Formula

a(n) = 0^(j(n,1)*j(n,-1)) with j(n,i) = if n mod 2 = 0 then n else j((n+i)/2,-i).
a(n) = A105348(n), for n <> 1. - R. J. Mathar, Nov 19 2008
For n > 0, a(n) = A000035(A281228(A265746(n))), where A000035(A281228(n)) is the characteristic function of powers of 3 (A000244). - Antti Karttunen, Oct 09 2017

A293435 a(n) is the number of the proper divisors of n that are Fibonacci numbers (A000045).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 2, 3, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 4, 1, 3, 2, 2, 2, 3, 1, 2, 3, 4, 1, 4, 1, 2, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			For n = 55, its proper divisors are [1, 5, 11], of which only two, namely 1 and 5 are in A000045, thus a(55) = 2.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Fibonacci@ Range[2, 40]}, Table[DivisorSum[n, 1 &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    A010056(n) = { my(k=n^2); k+=(k+1)<<2; (issquare(k) || (n>0 && issquare(k-8))) }; \\ This function from Charles R Greathouse IV, Jul 30 2012
    A293435(n) = sumdiv(n,d,(dA010056(d));

Formula

a(n) = Sum_{d|n, dA010056(d).
a(n) = A005086(n) - A010056(n).
G.f.: Sum_{k>=2} x^(2*Fibonacci(k)) / (1 - x^Fibonacci(k)). - Ilya Gutkovskiy, Apr 14 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A079586 - 1 = 2.359885... . - Amiram Eldar, Jul 05 2025

A293431 a(n) is the number of Jacobsthal numbers dividing n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 2, 1, 2, 3, 2, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 3, 2, 2, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 3, 2, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			For n = 15, whose divisors are [1, 3, 5, 15], the first three, 1, 3 and 5 are all in A001045, thus a(15) = 3.
For n = 21, whose divisors are [1, 3, 7, 21], 1, 3 and 21 are in A001045, thus a(21) = 3.
For n = 105, whose divisors are [1, 3, 5, 7, 15, 21, 35, 105], only the divisors 1, 3, 5 and 21 are in A001045, thus a(105) = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{s = LinearRecurrence[{1, 2}, {0, 1}, 24]}, Array[DivisorSum[#, 1 &, MemberQ[s, #] &] &, 105]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    A147612aux(n,i) = if(!(n%2),n,A147612aux((n+i)/2,-i));
    A147612(n) = 0^(A147612aux(n,1)*A147612aux(n,-1));
    A293431(n) = sumdiv(n,d,A147612(d));
    
  • Python
    from sympy import divisors
    def A293431(n): return sum(1 for d in divisors(n,generator=True) if (m:=3*d+1).bit_length()>(m-3).bit_length()) # Chai Wah Wu, Apr 18 2025

Formula

a(n) = Sum_{d|n} A147612(d).
a(n) = A293433(n) + A147612(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=2} 1/A001045(n) = 1.718591611927... . - Amiram Eldar, Jan 01 2024

A293434 a(n) is the sum of the proper divisors of n that are Jacobsthal numbers (A001045).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 12, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 15, 1, 6, 4, 1, 1, 4, 6, 1, 25, 1, 12, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 17, 1, 4, 1, 1, 9, 1, 1, 25, 1, 6, 15, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 12, 4, 1, 6, 4, 1, 1, 25, 6, 44, 4, 12, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 15, 6, 1, 4, 1, 1, 30
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2017

Keywords

Examples

			For n = 15, whose proper divisors are [1, 3, 5], all of them are in A001045, thus a(15) = 1 + 3 + 5 = 9.
For n = 21, whose proper divisors are [1, 3, 7], both 1 and 3 are in A001045, thus a(21) = 1 + 3 = 4.
For n = 21845, whose proper divisors are [1, 5, 17, 85, 257, 1285, 4369], only 1, 5, 85 are in A001045, thus a(21845) = 1 + 5 + 85 = 91.
		

Crossrefs

Programs

  • Mathematica
    With[{s = LinearRecurrence[{1, 2}, {0, 1}, 24]}, Table[DivisorSum[n, # &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
  • PARI
    A147612aux(n,i) = if(!(n%2),n,A147612aux((n+i)/2,-i));
    A147612(n) = 0^(A147612aux(n,1)*A147612aux(n,-1));
    A293434(n) = sumdiv(n,d,(dA147612(d)*d);
    
  • Python
    from sympy import divisors
    def A293434(n): return sum(d for d in divisors(n,generator=True) if d(m-3).bit_length()) # Chai Wah Wu, Apr 18 2025

Formula

a(n) = Sum_{d|n, dA147612(d)*d.
a(n) = A293432(n) - (A147612(n)*n).

A294879 Number of proper divisors of n that are in Perrin sequence, A001608.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 0, 3, 2, 1, 0, 3, 1, 1, 1, 2, 0, 4, 0, 1, 1, 2, 2, 3, 0, 1, 1, 3, 0, 3, 0, 2, 2, 1, 0, 3, 1, 3, 2, 1, 0, 2, 1, 2, 1, 2, 0, 5, 0, 1, 2, 1, 1, 3, 0, 2, 1, 4, 0, 3, 0, 1, 2, 1, 1, 3, 0, 3, 1, 1, 0, 4, 2, 1, 2, 2, 0, 4, 1, 1, 1, 1, 1, 3, 0, 2, 1, 3, 0, 4, 0, 1, 3, 1, 0, 3, 0, 4, 1, 2, 0, 2, 1, 2, 2, 1, 2, 5, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Examples

			For n = 22, with proper divisors [1, 2, 11], only 2 is in A001608, thus a(22) = 1.
For n = 121, with proper divisors [1, 11], neither of them is in A001608, thus a(121) = 0. Note that this is the first zero not in A008578.
For n = 644, with proper divisors [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644], both 2 and 7 are in A001608, thus a(644) = 2.
		

Crossrefs

Programs

  • PARI
    A001608(n) = if(n<0, 0, polsym(x^3-x-1, n)[n+1]);
    A294878(n) = { my(k=1,v); while((v=A001608(k))A294879(n) = sumdiv(n,d,(dA294878(d));

Formula

a(n) = Sum_{d|n, dA294878(d).
a(n) = A294880(n) - A294878(n).
Showing 1-5 of 5 results.