A333619 Numbers that are divisible by the total number of 1's in the Zeckendorf representations of all their divisors (A300837).
1, 2, 4, 10, 15, 18, 20, 25, 44, 55, 56, 63, 70, 78, 80, 96, 108, 126, 128, 190, 275, 324, 338, 341, 416, 442, 451, 484, 494, 517, 520, 550, 637, 682, 720, 726, 736, 760, 780, 781, 803, 816, 845, 946, 990, 1088, 1111, 1113, 1199, 1235, 1239, 1311, 1426, 1441
Offset: 1
Examples
4 is a term since its divisors are {1, 2, 4}, their Zeckendorf representations (A014417) are {1, 10, 101}, and their sum of sums of digits is 1 + (1 + 0) + (1 + 0 + 1) = 4 which is a divisor of 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
zeckDigSum[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5] * # + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; zeckDivDigSum[n_] := DivisorSum[n, zeckDigSum[#] &]; Select[Range[10^3], Divisible[#, zeckDivDigSum[#]] &]
Comments