cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324907 a(n) = A007895(A113175(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 4, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 4, 1, 2, 1, 3, 1, 1, 4, 3, 3, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2019

Keywords

Crossrefs

Programs

  • PARI
    A113175(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = fibonacci(f[i, 1])); factorback(f); };
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A324907(n) = A007895(A113175(n));

Formula

a(n) = A007895(A113175(n)).
a(2n) = a(n).

A328848 Number of terms in Zeckendorf expansion needed to write the second Fibonacci based variant of arithmetic derivative of n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 3, 1, 2, 2, 3, 1, 2, 1, 3, 3, 3, 1, 4, 1, 2, 3, 3, 1, 3, 3, 2, 3, 5, 1, 2, 1, 3, 4, 2, 4, 1, 1, 3, 2, 3, 1, 4, 1, 5, 5, 5, 1, 3, 3, 3, 3, 4, 1, 5, 4, 6, 4, 4, 1, 3, 1, 4, 5, 3, 3, 4, 1, 3, 4, 3, 1, 5, 1, 6, 4, 5, 3, 4, 1, 3, 3, 6, 1, 4, 3, 6, 6, 6, 1, 5, 3, 5, 5, 4, 5, 3, 1, 2, 5, 3, 1, 4, 1, 4, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 29 2019

Keywords

Crossrefs

Programs

  • PARI
    A328846(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(2+primepi(f[i,1]))/f[i, 1]));
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A328848(n) = A007895(A328846(n));

Formula

a(n) = A007895(A328846(n)).

A324901 a(n) = A007895(A324900(n)).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 2, 4, 2, 4, 3, 6, 2, 5, 2, 5, 4, 4, 2, 6, 3, 4, 6, 5, 2, 3, 2, 7, 4, 4, 3, 7, 2, 4, 4, 5, 2, 7, 2, 6, 6, 4, 2, 7, 3, 6, 4, 6, 2, 5, 4, 4, 4, 4, 2, 5, 2, 4, 5, 7, 4, 7, 2, 6, 4, 5, 2, 8, 2, 4, 5, 6, 3, 8, 2, 9, 8, 4, 2, 5, 4, 4, 4, 11, 2, 6, 4, 6, 4, 4, 4, 10, 2, 6, 5, 5, 2, 8, 2, 11, 8
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2019

Keywords

Crossrefs

Programs

  • PARI
    A000032(n) = (fibonacci(n+1)+fibonacci(n-1));
    A324900(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = A000032(2*(1+primepi(f[i, 1])))); factorback(f); };
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A324901(n) = A007895(A324900(n));

Formula

a(n) = A007895(A324900(n)).
Showing 1-3 of 3 results.