A005092 Sum of Fibonacci numbers 1,2,3,5,... that divide n.
1, 3, 4, 3, 6, 6, 1, 11, 4, 8, 1, 6, 14, 3, 9, 11, 1, 6, 1, 8, 25, 3, 1, 14, 6, 16, 4, 3, 1, 11, 1, 11, 4, 37, 6, 6, 1, 3, 17, 16, 1, 27, 1, 3, 9, 3, 1, 14, 1, 8, 4, 16, 1, 6, 61, 11, 4, 3, 1, 11, 1, 3, 25, 11, 19, 6, 1, 37, 4, 8, 1, 14, 1, 3, 9, 3, 1, 19, 1
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
a:= n-> add(`if`(issqr(5*d^2+4) or issqr(5*d^2-4), d, 0) , d=numtheory[divisors](n)): seq(a(n), n=1..100); # Alois P. Heinz, Jan 07 2017
-
Mathematica
nmax = 100; With[{fibs = Fibonacci[Range[2, Floor[Log[nmax*Sqrt[5]] / Log[GoldenRatio]] + 1]]}, Table[Total[Select[fibs, Divisible[n, #1] & ]], {n, 1, nmax}]] (* Vaclav Kotesovec, Apr 29 2019 *)
Formula
G.f.: Sum_{k>=2} F(k)*x^F(k)/(1 - x^F(k)), where F(k) is the k-th Fibonacci number (A000045). - Ilya Gutkovskiy, Jan 06 2017