cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A179199 E.g.f. satisfies: A(x) = (1+x)/(1+2*x)*A(x+x^2) with A(0)=0.

Original entry on oeis.org

0, 1, -2, 9, -64, 620, -7536, 109032, -1809984, 33562944, -681799680, 14980204800, -354016189440, 9017296704000, -249422713344000, 7530733353024000, -246212297533440000, 8509848430274150400, -302719894872204902400
Offset: 0

Views

Author

Paul D. Hanna, Jul 09 2010

Keywords

Examples

			E.g.f.: A(x) = x - 2*x^2/2! + 9*x^3/3! - 64*x^4/4! + 620*x^5/5! - 7536*x^6/6! + 109032*x^7/7! - 1809984*x^8/8! + 33562944*x^9/9! - 681799680*x^10/10! + 14980204800*x^11/11! - 354016189440*x^12/12! + ...
E.g.f. satisfies: A(x) = (1+x)/(1+2*x)*A(x+x^2) where:
. A(x+x^2) = x - 3*x^3/3! + 20*x^4/4! - 120*x^5/5! + 624*x^6/6! - 840*x^7/7! - 58752*x^8/8! + 1512000*x^9/9! - 25660800*x^10/10! + ...
E.g.f. A = A(x) satisfies:
. x = A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! + ...
where Dx(F) = d/dx(x*F) and expansions begin:
. A*Dx(A) = 4*x^2/2! - 30*x^3/3! + 288*x^4/4! - 3500*x^5/5! +- ...
. A*Dx(A*Dx(A)) = 36*x^3/3! - 624*x^4/4! + 10680*x^5/5! -+ ...
. A*Dx(A*Dx(A*Dx(A))) = 576*x^4/4! - 18480*x^5/5! + 504000*x^6/6! -+ ...
. A*Dx(A*Dx(A*Dx(A*Dx(A)))) = 14400*x^5/5! - 751680*x^6/6! +- ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= If[n<2, n, (-1/(n-1))*Sum[j!*Binomial[n, j]*Binomial[n-j+1, j+1]*a[n -j], {j, n-1}]];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Sep 03 2022 *)
  • PARI
    /* E.g.f. satisfies: A(x) = (1+x)/(1+2*x)*A(x+x^2): */
    {a(n)=local(A=x,B);for(m=2,n,B=(1+x)/(1+2*x+O(x^(n+3)))*subst(A,x,x+x^2+O(x^(n+3)));A=A-polcoeff(B,m+1)*x^m/(m-1));n!*polcoeff(A,n)}
    
  • PARI
    /* Recurrence (slow): */
    {a(n)=if(n<1, 0, if(n==1, 1, -n*(n-2)!*sum(i=1, n-1,binomial(n-i+1, i+1)*a(n-i)/(n-i)!)))}
    
  • PARI
    /* x = A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +...: */
    {a(n)=local(A=x+sum(m=2,n-1,a(m)*x^m/m!),G=1,R=0);R=sum(m=1,n,(G=A*deriv(x*G+x*O(x^n)))/m!);if(n==1,1,-n!*polcoeff(R,n))}
    
  • PARI
    /* As column 0 of the matrix log of triangle A030528: */
    {a(n)=local(A030528=matrix(n+1,n+1,r,c,if(r>=c,binomial(c,r-c))),LOG,ID=A030528^0);LOG=sum(m=1,n+1,-(ID-A030528)^m/m);n!*LOG[n+1,1]}
    
  • SageMath
    @CachedFunction
    def a(n): # a = A179199
        if (n<2): return n
        else: return (-1/(n-1))*sum( factorial(j)*binomial(n,j)*binomial(n-j+1, j+1)*a(n-j) for j in (1..n-1) )
    [a(n) for n in (0..40)] # G. C. Greubel, Sep 03 2022

Formula

E.g.f. A=A(x) satisfies: x = A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! + ... where Dx(F) = d/dx(x*F).
...
a(n) = -n*(n-2)!*Sum_{i=1..n-1} C(n-i+1,i+1)*a(n-i)/(n-i)! for n>1 with a(1)=1.
...
a(n) = (-1)^(n-1)*n*A005119(n), where A005119 describes the infinitesimal generator of (x+x^2).
...
Equals column 0 of A179198, the matrix log of triangle A030528, where A030528(n,k) = C(k,n-k); the g.f. of column k in A030528 is (x+x^2)^(k+1)/x.
...
A179198(n,k) = (k+1)*a(n-k)/(n-1)! for n>0, k>=0, where A179198 = matrix log of triangle A030528.
...

A136168 a(n) = (n-1)!*Sum_{i=1..n-1} (-1)^(i+1)*A027907(n-i+2,i+1)*a(n-i)/(n-i)! for n>0 with a(0)=1, where A027907 is the triangle of trinomial coefficients.

Original entry on oeis.org

1, 3, 16, 120, 1140, 12972, 171216, 2571912, 43429680, 816108048, 16894168704, 381536713152, 9332214825024, 246215663789760, 6984603724315392, 211834855804295808, 6819603388970206464, 232454553855108173568
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2007, Jan 24 2008

Keywords

Examples

			E.g.f.: A(x) = 1 + 3x + 16x^2/2! + 120x^3/3! + 1140x^4/4! + 12972x^5/5! +...
		

Crossrefs

Cf. A027907; A005119 (variant).

Programs

  • PARI
    {a(n)=if(n<0,0,if(n==0,1,(n-1)!*sum(i=1,n,(-1)^(i+1)*polcoeff((1+x+x^2)^(n-i+2),i+1)*a(n-i)/(n-i)!)))}

Formula

E.g.f. satisfies: A(x) = (1-x+x^2)^2/(1-2x)*A(x-x^2+x^3).
Showing 1-2 of 2 results.