A005151 Summarize the previous term (digits in increasing order), starting with a(1) = 1.
1, 11, 21, 1112, 3112, 211213, 312213, 212223, 114213, 31121314, 41122314, 31221324, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314, 21322314
Offset: 1
Examples
The term after 312213 is obtained by saying "Two 1's, two 2's, two 3's", which gives 21-22-23, i.e., 212223.
References
- C. Fleenor, "A litteral sequence", Solution to Problem 2562, Journal of Recreational Mathematics, vol. 31 No. 4 pp. 307 2002-3 Baywood NY.
- Problem in J. Recreational Math., 30 (4) (1999-2000), p. 309.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- V. Bronstein and A. S. Fraenkel, On a curious property of counting sequences, Amer. Math. Monthly, 101 (1994), 560-563.
- Onno M. Cain and Sela T. Enin, Inventory Loops (i.e. Counting Sequences) have Pre-period 2 max S_1 + 60, arXiv:2004.00209 [math.NT], 2020.
- X. Gourdon and B. Salvy, Effective asymptotics of linear recurrences with rational coefficients, Discrete Mathematics, vol. 153, no. 1-3, 1996, pages 145-163.
- James Henle, Is (some) mathematics poetry?, Journal of Humanistic Mathematics 1:1 (2011), pp. 94-100.
- Madras Math's Amazing Number Facts, Fact No. 13
- Madras Math, Descriptive Number
- Trevor Scheopner, The Cyclic Nature (and Other Intriguing Properties) of Descriptive Numbers, Princeton Undergraduate Mathematics Journal, Issue 1, Article 4.
- L. J. Upton, Letter to N. J. A. Sloane, Jan 8 1991.
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Haskell
import Data.List (group, sort, transpose) a005151 n = a005151_list !! (n-1) a005151_list = 1 : f [1] :: [Integer] where f xs = (read $ concatMap show ys) : f ys where ys = concat $ transpose [map length zss, map head zss] zss = group $ sort xs -- Reinhard Zumkeller, Jan 25 2014
-
Mathematica
RunLengthEncode[x_List] := (Through[{Length, First}[ #1]] &) /@ Split[ Sort[x]]; LookAndSay[n_, d_:1] := NestList[ Flatten[ RunLengthEncode[ # ]] &, {d}, n - 1]; F[n_] := LookAndSay[n, 1][[n]]; Table[ FromDigits[ F[n]], {n, 25}] (* Robert G. Wilson v, Jan 22 2004 *) a[1] = 1; a[n_] := a[n] = FromDigits[Reverse /@ Sort[Tally[a[n-1] // IntegerDigits], #1[[1]] < #2[[1]]&] // Flatten]; Array[a, 26] (* Jean-François Alcover, Jan 25 2016 *)
-
PARI
say(n) = {digs = digits(n); d = vecsort(digs,,8); s = ""; for (k=1, #d, nbk = #select(x->x==d[k], digs); s = concat(s, Str(nbk)); s = concat(s, d[k]);); eval(s);} lista(nn) = {print1(n = 1, ", "); for (k=1, nn, m = say(n); print1(m, ", "); n = m;);} \\ Michel Marcus, Feb 12 2016
-
PARI
a(n,show_all=1,a=1)={for(i=2,n,show_all&&print1(a",");a=A047842(a));a} \\ M. F. Hasler, Feb 25 2018
-
PARI
Vec(x*(1 + 10*x + 10*x^2 + 1091*x^3 + 2000*x^4 + 208101*x^5 + 101000*x^6 - 99990*x^7 - 98010*x^8 + 31007101*x^9 + 10001000*x^10 - 9900990*x^11 - 9899010*x^12) / (1 - x) + O(x^40)) \\ Colin Barker, Aug 23 2018
-
Python
from itertools import accumulate, groupby, repeat def summarize(n, _): return int("".join(str(len(list(g)))+k for k, g in groupby(sorted(str(n))))) def aupton(nn): return list(accumulate(repeat(1, nn+1), summarize)) print(aupton(25)) # Michael S. Branicky, Jan 11 2021
Formula
a(n+1) = A047842(a(n)). - M. F. Hasler, Feb 25 2018
G.f.: x*(1 + 10*x + 10*x^2 + 1091*x^3 + 2000*x^4 + 208101*x^5 + 101000*x^6 - 99990*x^7 - 98010*x^8 + 31007101*x^9 + 10001000*x^10 - 9900990*x^11 - 9899010*x^12) / (1 - x). - Colin Barker, Aug 23 2018
Comments