cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005154 a(0) = 1, a(1) = 2; thereafter a(n) = 3*a(n-1)^2 - 2*a(n-2)^4.

Original entry on oeis.org

1, 2, 10, 268, 195472, 104310534400, 29722161121961969778688, 2413441860555924454205324333893477339897004032, 15913289476042091181119569948276231488639535067163704670852319029791565485433738366445158400
Offset: 0

Views

Author

Keywords

Comments

A lower bound for maximal number of stable matchings (or marriages) possible with 2^n men and 2^n women for suitable preference ordering.

References

  • D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989, p. 25.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Recurrence is similar to A076725.

Programs

  • Magma
    I:=[1,2]; [m le 2 select I[m] else 3*Self(m-1)^2-2*Self(m-2)^4: m in [1..9]]; // Marius A. Burtea, Aug 09 2019
  • Maple
    A005154 := proc(n) option remember; if n <= 1 then n+1 else 3*A005154(n-1)^2-2*A005154(n-2)^4; fi; end;
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==3a[n-1]^2-2a[n-2]^4},a,{n,8}] (* Harvey P. Dale, Mar 19 2012 *)

Formula

a(n) ~ r*s^(2^n), where r = (sqrt(3)-1)/2 = 0.366025... and s = 2.28014... . - Clayton Thomas, Aug 09 2019
The Karlin, Gharan, Weber upper bound is C^(2^n) for a large C. - Domotor Palvolgyi, Feb 09 2020

Extensions

Formula and comment swapped by N. J. A. Sloane, Mar 01 2020