cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005156 Number of alternating sign 2n+1 X 2n+1 matrices symmetric about the vertical axis (VSASM's); also 2n X 2n off-diagonally symmetric alternating sign matrices (OSASM's).

Original entry on oeis.org

1, 1, 3, 26, 646, 45885, 9304650, 5382618660, 8878734657276, 41748486581283118, 559463042542694360707, 21363742267675013243931852, 2324392978926652820310084179576, 720494439459132215692530771292602232, 636225819409712640497085074811372777428304
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the Hankel transform of A006013. - Paul Barry, Jan 20 2007
a(n+1) is the Hankel transform of A025174(n+1). - Paul Barry, Apr 14 2008

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 201, VS(2n+1).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005156 := proc(n) local i,j,t1; (-3)^(n^2)*mul( mul( (6*j-3*i+1)/(2*j-i+2*n+1), j=1..n ),i=1..2*n+1); end;
  • Mathematica
    Table[1/2^n Product[((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!),{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 07 2011 *)
  • PARI
    a(n) = prod(k = 0, n-1, (3*k+2)*(6*k+3)!*(2*k+1)!/((4*k+2)!*(4*k+3)!));
    vector(15, n, a(n-1))  \\ Gheorghe Coserea, May 30 2016

Formula

The formula for a(n) (see the Maple code) was conjectured by Robbins and proved by Kuperberg.
a(n) = (1/2^n) * Product_{k=1..n} ((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!) (Razumov/Stroganov).
a(n) ~ exp(1/72) * Pi^(1/6) * 3^(3*n^2 + 3*n/2 + 11/72) / (A^(1/6) * GAMMA(1/3)^(1/3) * n^(5/72) * 2^(4*n^2 + 3*n + 1/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015