A005166 a(0) = 1; a(n) = (1 + a(0)^3 + ... + a(n-1)^3)/n (not always integral!).
1, 2, 5, 45, 22815, 2375152056927, 2233176271342403475345148513527359103
Offset: 0
References
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..9
- R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- N. Lygeros & M. Mizony, Study of primality of terms of a_k(n)=(1+(sum from 1 to n-1)(a_k(i)^k))/(n-1) [dead link]
- Alex Stone, The Astonishing Behavior of Recursive Sequences, Quanta Magazine, Nov 16 2023, 13 pages.
- Eric Weisstein's World of Mathematics, Goebel's Sequence.
Programs
-
Mathematica
a[0]=1; a[n_]:=(1 + Sum[a[k]^3, {k,0,n-1}])/n; Array[a,7,0] (* Stefano Spezia, Oct 13 2024 *)
Comments