A005203 Fibonacci numbers (or rabbit sequence) converted to decimal.
0, 1, 2, 5, 22, 181, 5814, 1488565, 12194330294, 25573364166211253, 439347050970302571643057846, 15829145720289447797800874537321282579904181, 9797766637414564027586288536574448245991597197836000123235901011048118
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..17
- J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc., 63 (1977), 29-32.
- H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318.
- Ron Knott, The Fibonacci Rabbit Sequence
- Ron Knott, Rabbit Sequence in Zeckendorf Expansion (A003714)
- Eric Weisstein's World of Mathematics, Rabbit Sequence
Crossrefs
Programs
-
Maple
rewrite_0to1_1to10_n_i_times := proc(n,i) local z,j; z := n; j := i; while(j > 0) do z := rewrite_0to1_1to10(z); j := j - 1; od; RETURN(z); end; rewrite_0to1_1to10 := proc(n) option remember; if(n < 2) then RETURN(n + 1); else RETURN(((2^(1+(n mod 2))) * rewrite_0to1_1to10(floor(n/2))) + (n mod 2) + 1); fi; end;
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1]*2^Fibonacci[n-1] + a[n-2]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jul 27 2011 *)
-
Python
def A005203(n): s = '0' for i in range(n): s = s.replace('0','a').replace('1','10').replace('a','1') return int(s,2) # Chai Wah Wu, Apr 24 2025
Formula
a(0) = 0, a(1) = 1, a(n) = a(n-1) * 2^F(n-1) + a(n-2).
a(n) = rewrite_0to1_1to10_n_i_times(0, n) [ Each 0->1, 1->10 in binary expansion ]
Extensions
Comments and more terms from Antti Karttunen, Mar 30 1999
Comments