cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005223 Number of Dyck paths of knight moves.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 7, 10, 29, 52, 142, 294, 772, 1732, 4451, 10482, 26715, 64908, 165194, 409720, 1044629, 2627712, 6721492, 17079076, 43853111, 112273270, 289390434, 745262022, 1928015211, 4988699442, 12949776427, 33638741110, 87590340673
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    CoefficientList[Series[1-1/(((1+2z+Sqrt[1-4z+4z^2-4z^4])-Sqrt[2] Sqrt[ 1-4z^2-2z^4+(2z+1)Sqrt[1-4z+4z^2-4z^4]])/(4z^2)),{z,0,40}],z] (* Harvey P. Dale, Oct 11 2011 *)

Formula

G.f.=1-1/A, where A=(1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
a(n) ~ (23*sqrt(2*(9-5*sqrt(3))) + sqrt(138*(7*sqrt(3)-3))) * (1+sqrt(3))^n / (184*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2014
A(x) = 1 - 1/A005220(x). - Gheorghe Coserea, Jan 16 2017

Extensions

More terms from Emeric Deutsch, Dec 17 2003