A005223 Number of Dyck paths of knight moves.
0, 0, 1, 0, 2, 2, 7, 10, 29, 52, 142, 294, 772, 1732, 4451, 10482, 26715, 64908, 165194, 409720, 1044629, 2627712, 6721492, 17079076, 43853111, 112273270, 289390434, 745262022, 1928015211, 4988699442, 12949776427, 33638741110, 87590340673
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- J. Labelle and Y.-N. Yeh, Dyck paths of knight moves, Discrete Applied Math., 24 (1989), 213-221.
Programs
-
Mathematica
CoefficientList[Series[1-1/(((1+2z+Sqrt[1-4z+4z^2-4z^4])-Sqrt[2] Sqrt[ 1-4z^2-2z^4+(2z+1)Sqrt[1-4z+4z^2-4z^4]])/(4z^2)),{z,0,40}],z] (* Harvey P. Dale, Oct 11 2011 *)
Formula
G.f.=1-1/A, where A=(1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
a(n) ~ (23*sqrt(2*(9-5*sqrt(3))) + sqrt(138*(7*sqrt(3)-3))) * (1+sqrt(3))^n / (184*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2014
A(x) = 1 - 1/A005220(x). - Gheorghe Coserea, Jan 16 2017
Extensions
More terms from Emeric Deutsch, Dec 17 2003