cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005238 Numbers k such that k, k+1 and k+2 have the same number of divisors.

Original entry on oeis.org

33, 85, 93, 141, 201, 213, 217, 230, 242, 243, 301, 374, 393, 445, 603, 633, 663, 697, 902, 921, 1041, 1105, 1137, 1261, 1274, 1309, 1334, 1345, 1401, 1641, 1761, 1832, 1837, 1885, 1893, 1924, 1941, 1981, 2013, 2054, 2101, 2133, 2181, 2217, 2264, 2305
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 33, pp. 12, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a005238 n = a005238_list !! (n-1)
    a005238_list = map (+ 1) $ elemIndices 0 $ zipWith (+) ds $ tail ds where
       ds = map abs $ zipWith (-) (tail a000005_list) a000005_list
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Mathematica
    Select[Range[2500],DivisorSigma[0,#]==DivisorSigma[0,#+1] == DivisorSigma[ 0,#+2]&] (* Harvey P. Dale, Nov 12 2012 *)
    Flatten[Position[Partition[DivisorSigma[0,Range[2500]],3,1],{x_,x_,x_}]] (* Harvey P. Dale, Jul 06 2015 *)
    SequencePosition[DivisorSigma[0,Range[2500]],{x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 03 2017 *)
  • PARI
    is(n)=my(d=numdiv(n)); numdiv(n+1)==d && numdiv(n+2)==d \\ Charles R Greathouse IV, Feb 06 2017

Extensions

More terms from Olivier Gérard