cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005263 Number of labeled Greg trees.

Original entry on oeis.org

1, 1, 1, 4, 32, 396, 6692, 143816, 3756104, 115553024, 4093236352, 164098040448, 7345463787136, 363154251536896, 19653476190481408, 1155636468524067328, 73364615077878838784, 5001199614295920565248, 364363128390631094137856
Offset: 0

Views

Author

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and labeled and the white nodes are of degree at least 3.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    E:= 1/4 -LambertW(-(1+x)*exp(-1/2)/2)^2 - 2*LambertW(-(1+x)*exp(-1/2)/2):
    S:= series(E,x,21):
    seq(coeff(S,x,j)*j!, j=0..20); # Robert Israel, Mar 28 2017
  • Mathematica
    max = 18; b[x] := -1/2 - ProductLog[-Exp[-1/2]*(x+1)/2]; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; sol = SolveAlways[ Normal[ Series[f[x] - (1 + b[x] - b[x]^2), {x, 0, max}]] == 0, x]; First[Table[c[k], {k, 0, max}] /. sol]*Range[0, max]! (* Jean-François Alcover, May 21 2012, from e.g.f. *)
    a[ n_] := If[ n < 1, Boole[n == 0], n! SeriesCoefficient[ With[ {B =      InverseSeries[ Series[ Exp[-x] (1 + 2 x) - 1, {x, 0, n}]]}, B - B^2], n]] (* Michael Somos, Jun 07 2012 *)
  • PARI
    {a(n) = local(A); if( n<1, n==0, for( k=1, n, A += x * O(x^k); A = truncate( (1 + x) * exp(A) - 1 - A) ); A += x * O(x^n); A -= A^2; n! * polcoeff( A, n))} /* Michael Somos, Apr 02 2007 */

Formula

E.g.f.: 1 + B(x) - B(x)^2 where B(x) is e.g.f. of A005264.
a(n) ~ n^(n-2) / (sqrt(2) * exp(n/2) * (2-exp(1/2))^(n-3/2)). - Vaclav Kotesovec, Jul 09 2013
E.g.f.: 1/4 - W(-(1+x)*exp(-1/2)/2)^2 - 2*W(-(1+x)*exp(-1/2)/2) where W is the Lambert W function. - Robert Israel, Mar 28 2017

Extensions

More terms, formula and comment from Christian G. Bower, Nov 15 1999