cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A266757 Erroneous version of A005263.

Original entry on oeis.org

1, 1, 4, 31, 367
Offset: 1

Views

Author

Keywords

Comments

Included in accordance with OEIS policy of including published but erroneous sequences so as to give links to the correct versions.

A005264 Number of labeled rooted Greg trees with n nodes.

Original entry on oeis.org

1, 3, 22, 262, 4336, 91984, 2381408, 72800928, 2566606784, 102515201984, 4575271116032, 225649908491264, 12187240730230528, 715392567595403520, 45349581052869924352, 3087516727770990992896, 224691760916830871873536
Offset: 1

Views

Author

Keywords

Comments

A rooted Greg tree can be described as a rooted tree with 2-colored nodes where only the black nodes are counted and labeled and the white nodes have at least 2 children. - Christian G. Bower, Nov 15 1999

Examples

			G.f. = x + 3*x^2 + 22*x^3 + 262*x^4 + 4336*x^5 + 91984*x^6 + 2381408*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Inverse Stirling transform of A005172 (hence corrected and extended). - John W. Layman

Programs

  • Maple
    T := proc(n,k) option remember; if k=0 and (n=0 or n=1) then return(1) fi; if k<0 or k>n then return(0) fi;
    (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1) end:
    A005264 := proc(n) add(T(n,k)*(-1)^k*2^(n-k-1), k=0..n-1) end;
    seq(A005264(n),n=1..17); # Peter Luschny, Nov 10 2012
  • Mathematica
    max = 17; f[x_] := -1/2 - ProductLog[-E^(-1/2)*(x + 1)/2]; Rest[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!] (* Jean-François Alcover, May 23 2012, after Peter Bala *)
    a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ InverseSeries[ Series[ Exp[-x] (1 + 2 x) - 1, {x, 0, n}]], n]]; (* Michael Somos, Jun 07 2012 *)
  • Maxima
    a(n):=if n=1 then 1 else sum((n+k-1)!*sum(1/(k-j)!*sum(1/(l!*(j-l)!)*sum(((-1)^(i+l)*l^i*binomial(l,n+j-i-1)*2^(n+j-i-1))/i!,i,0,n+j-1),l,1,j),j,1,k),k,1,n-1); /* Vladimir Kruchinin, May 04 2012 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, for( k= 1, n, A += x * O(x^k); A = truncate( (1 + x) * exp(A) - 1 - A) ); n! * polcoeff( A, n))}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = if( n<1, 0, n! * polcoeff( serreverse( exp( -x + x * O(x^n) ) * (1 + 2*x) - 1), n))}; /* Michael Somos, Mar 26 2011 */
    
  • Sage
    @CachedFunction
    def T(n,k):
        if k==0 and (n==0 or n==1): return 1
        if k<0 or k>n: return 0
        return (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1)
    A005264 = lambda n: add(T(n,k)*(-1)^k*2^(n-k-1) for k in (0..n-1))
    [A005264(n) for n in (1..17)]  # Peter Luschny, Nov 10 2012

Formula

Exponential reversion of A157142 with offset 1. - Michael Somos, Mar 26 2011
The REVEGF transform of the odd numbers [1,3,5,7,9,11,...] is [1, -3, 22, -262, 4336, -91984, 2381408, ...] - N. J. A. Sloane, May 26 2017
E.g.f. A(x) = y satisfies y' = (1 + 2*y) / ((1 - 2*y) * (1 + x)). - Michael Somos, Mar 26 2011
E.g.f. A(x) satisfies (1 + x) * exp(A(x)) = 1 + 2 * A(x).
From Peter Bala, Sep 08 2011: (Start)
A(x) satisfies the separable differential equation A'(x) = exp(A(x))/(1-2*A(x)) with A(0) = 0. Thus the inverse function A^-1(x) = int {t = 0..x} (1-2*t)/exp(t) = exp(-x)*(2*x+1)-1 = x-3*x^2/2!+5*x^3/3!-7*x^4/4!+.... A(x) = -1/2-LambertW(-exp(-1/2)*(x+1)/2).
The expansion of A(x) can be found by inverting the above integral using the method of [Dominici, Theorem 4.1] to arrive at the result a(n) = D^(n-1)(1) evaluated at x = 0, where D denotes the operator g(x) -> d/dx(exp(x)/(1-2*x)*g(x)). Compare with [Dominici, Example 9].
(End)
a(n)=sum(k=1..n-1, (n+k-1)!*sum(j=1..k, 1/(k-j)!*sum(l=1..j, 1/(l!*(j-l)!)* sum(i=0..n+j-1, ((-1)^(i+l)*l^i*binomial(l,n+j-i-1)*2^(n+j-i-1))/i!)))), n>1, a(1)=1. - Vladimir Kruchinin, May 04 2012
Let T(n,k) = 1 if k=0 and (n=0 or n=1); T(n,k) = 0 if k<0 or k>n; and otherwise T(n,k) = (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1). Define polynomials p(n,w) = w^n*sum_{k=0..n-1}(T(n,k)*w^k)/(1+w)^(2*n-1), then a(n) = (-1)^n*p(n,-1/2). - Peter Luschny, Nov 10 2012
a(n) ~ n^(n-1) / (sqrt(2) * exp(n/2) * (2-exp(1/2))^(n-1/2)). - Vaclav Kotesovec, Jul 09 2013
E.g.f.: -W(-(1+x)*exp(-1/2)/2)-1/2 where W is the Lambert W function. - Robert Israel, Mar 28 2017

A048160 Triangle giving T(n,k) = number of (n,k) labeled rooted Greg trees (n >= 1, 0<=k<=n-1).

Original entry on oeis.org

1, 2, 1, 9, 10, 3, 64, 113, 70, 15, 625, 1526, 1450, 630, 105, 7776, 24337, 31346, 20650, 6930, 945, 117649, 450066, 733845, 650188, 329175, 90090, 10395, 2097152, 9492289, 18760302, 20925065, 14194180, 5845455, 1351350, 135135, 43046721
Offset: 1

Views

Author

Keywords

Comments

An (n,k) rooted Greg tree can be described as a rooted tree with n black nodes and k white nodes where only the black nodes are labeled and the white nodes have at least 2 children. - Christian G. Bower, Nov 15 1999

Examples

			Triangle begins:
  1;
  2, 1;
  9, 10, 3;
  64, 113, 70, 15;
  ...
		

Crossrefs

Row sums give A005264. Cf. A005263, A048159, A052300-A052303. A054589.

Programs

  • Mathematica
    t[n_ /; n >= 1, k_ /; k >= 0] /; 0 <= k <= n-1 := t[n, k] = (n+k-2) t[n-1, k-1] + (2n + 2k - 2)*t[n-1, k] + (k+1) t[n-1, k+1]; t[1, 0] = 1; t[, ] = 0; Flatten[Table[t[n, k], {n, 1, 9}, {k, 0, n-1}]] (* Jean-François Alcover, Jul 20 2011, after formula *)

Formula

T(n, 0)=n^(n-1), T(n, k)=(n+k-2)*T(n-1, k-1)+(2*n+2*k-2)*T(n-1, k)+(k+1)*T(n-1, k+1).
From Peter Bala, Sep 29 2011: (Start)
E.g.f.: compositional inverse with respect to x of t*(exp(-x)-1) + (1+t)*x*exp(-x) = compositional inverse with respect to x of (x - (2+t)*x^2/2! + (3+2*t)*x^3/3! - (4+3*t)*x^4/4! + ...) = x + (2+t)*x^2/2! + (9+10*t+3*t^2)*x^3/3! + ....
The row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) = (1+t)^2*R'(n,t)+n*(2+t)*R(n,t) with R(1,t) = 1.
The shifted row polynomials R(n,t-1) are the row generating polynomials of A054589. (End)
From Peter Bala, Sep 12 2012: (Start)
It appears that the entries in column k = 1 are given by T(n,1) = (n+1)^n - 2*n^n (checked up to n = 15) - see A176824.
Assuming this, we could then use the recurrence equation to obtain explicit formulas for columns k = 2,3,....
For example, T(n,2) = 1/2*{(n+2)^(n+1) - 4*(n+1)^(n+1) + (4*n+3)*n^n}. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000

A048159 Triangle giving a(n,k) = number of (n,k) labeled Greg trees (n >= 2, 0 <= k <= n-2).

Original entry on oeis.org

1, 3, 1, 16, 13, 3, 125, 171, 85, 15, 1296, 2551, 2005, 735, 105, 16807, 43653, 47586, 26950, 7875, 945, 262144, 850809, 1195383, 924238, 412650, 100485, 10395, 4782969, 18689527, 32291463, 31818045, 19235755, 7113645, 1486485, 135135
Offset: 2

Views

Author

Keywords

Comments

An (n,k) Greg tree can be described as a tree with n black nodes and k white nodes where only the black nodes are labeled and the white nodes are of degree at least 3.
Row sums give A005263.

Examples

			Triangle begins
    1;
    3,   1;
   16,  13,   3;
  125, 171,  85,  15;
  ...
		

Crossrefs

Programs

  • Mathematica
    a[n_, 0] := n^(n-2); a[n_ /; n >= 2, k_] /; 0 <= k <= n-2 := a[n, k] = (n+k-3)*a[n-1, k-1] + (2*n+2*k-3)*a[n-1, k] + (k+1)*a[n-1, k+1]; a[n_, k_] = 0; Table[a[n, k], {n, 2, 9}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Oct 03 2013 *)

Formula

a(n, 0) = n^(n-2), a(n, k) = (n+k-3)*a(n-1, k-1) + (2n+2k-3)*a(n-1, k) + (k+1)*a(n-1, k+1).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000

A005640 Number of phylogenetic trees with n labels.

Original entry on oeis.org

1, 1, 2, 8, 64, 832, 15104, 352256, 10037248, 337936384, 13126565888, 577818263552, 28425821618176, 1545553369366528, 92034646352592896, 5956917762776367104, 416397789920380321792, 31262503202358260924416, 2508985620606225641111552, 214348807882902869374926848, 19422044917978876510600167424
Offset: 0

Views

Author

Keywords

Comments

Each node of the tree is a subset of the labeled set {1,...,n}. If the subset node is empty, it must have degree at least 3.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.26.

Crossrefs

Programs

  • Mathematica
    a[n_ /; n > 2] := 2^(n-1)*(n-2)!*Sum[ Binomial[n+k-2, n-2]*Sum[ (-1)^j*Binomial[k, j]*Sum[ ((-1)^l*2^(j-l)*Binomial[j, l]*(j-l)!*StirlingS1[n+j-l-2, j-l])/(n+j-l-2)!, {l, 0, j}], {j, 1, k}], {k, 1, n-2}]; a[0] = a[1] = 1; a[2] = 2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Apr 10 2012, after Vladimir Kruchinin *)

Formula

STIRLING transform of A005263.
E.g.f.: 1+B(x)-B(x)^2 where B(x) is e.g.f. of A005172.
For n >= 2, a(n) = 2^n*A006351(n) = 2^(n+1)*A000311(n).

Extensions

More terms, formula and comment from Christian G. Bower, Nov 15 1999

A052300 Number of rooted Greg trees.

Original entry on oeis.org

1, 2, 6, 21, 78, 313, 1306, 5653, 25088, 113685, 523522, 2443590, 11533010, 54949539, 263933658, 1276652682, 6213207330, 30402727854, 149486487326, 738184395770, 3659440942282, 18205043615467, 90856842218506, 454770531433586, 2282393627458496, 11483114908752959
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A rooted Greg tree can be described as a rooted tree with 2-colored nodes where only the black nodes are counted and the white nodes have at least 2 children.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]];
    a[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a /@ Range[1, 40] (* Jean-François Alcover, Oct 02 2019, after Alois P. Heinz *)

Formula

Satisfies a = EULER(a) + SHIFT_RIGHT(EULER(a)) - a.
a(n) ~ c * d^n / n^(3/2), where d = 5.33997181362574740496306748840603859910694551382103293340704... and c = 0.18146848896221859476228524468003196434835879494225205... - Vaclav Kotesovec, Jun 11 2021

A052303 Number of asymmetric Greg trees.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 4, 12, 42, 137, 452, 1491, 4994, 16831, 57408, 197400, 685008, 2395310, 8437830, 29917709, 106724174, 382807427, 1380058180, 4998370015, 18181067670, 66393725289, 243347195594, 894959868983, 3301849331598, 12217869541117, 45335177297876
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and the white nodes are of degree at least 3.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)) :
    a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
    g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a[n_] := If[n == 0, 1, g[n] - Sum[g[j] g[n - j], {j, 0, n}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 28 2020, after Alois P. Heinz *)

Formula

G.f.: 1+B(x)-B(x)^2 where B(x) is g.f. of A052301.

A052301 Number of asymmetric rooted Greg trees.

Original entry on oeis.org

1, 1, 2, 5, 14, 43, 138, 455, 1540, 5305, 18546, 65616, 234546, 845683, 3072350, 11235393, 41326470, 152793376, 567518950, 2116666670, 7924062430, 29765741831, 112157686170, 423809991041, 1605622028100, 6097575361683, 23207825593664, 88512641860558
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A rooted Greg tree can be described as a rooted tree with 2-colored nodes where only the black nodes are counted and the white nodes have at least 2 children.

Crossrefs

Essentially the same as A031148. Cf. A005263, A005264, A048159, A048160, A052300-A052303.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<1, 1, b(n-1$2)) +b(n, n-1):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<1, 1, b[n-1, n-1]] + b[n, n-1];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

Satisfies a = WEIGH(a) + SHIFT_RIGHT(WEIGH(a)) - a.
a(n) ~ c * d^n / n^(3/2), where d = 4.0278584853545190803008179085023154..., c = 0.14959176868229550510957320468... . - Vaclav Kotesovec, Sep 12 2014

A052302 Number of Greg trees with n black nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 37, 116, 412, 1526, 5995, 24284, 101619, 434402, 1893983, 8385952, 37637803, 170871486, 783611214, 3625508762, 16906577279, 79395295122, 375217952457, 1783447124452, 8521191260092, 40907997006020, 197248252895597, 954915026282162
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and the white nodes are of degree at least 3.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
    a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
        Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a[n_] := If[n == 0, 1, g[n] - Sum[g[j]*g[n - j], {j, 0, n}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) - B(x)^2 where B(x) is g.f. of A052300.

A286432 Numbers of labeled rooted Greg trees (A005264) with n nodes and root degree 2.

Original entry on oeis.org

0, 1, 12, 151, 2545, 54466, 1417318, 43472780, 1536228588, 61466251616, 2746907348768, 135619260805568, 7331022129923648, 430638151053316480, 27315015477709844352, 1860627613021322933248, 135465573609158928964096, 10498038569346091127451136, 862792664850194915870874112
Offset: 1

Views

Author

Armin Hoenen, May 09 2017

Keywords

Comments

Numbers of rooted Greg trees with 2 subtrees below root given m labeled nodes (lead index). Among all trees at the same index (see sequence A005264) root bifurcating trees play a central role in philological discourse on the reconstruction of manuscript genealogies. Labeled nodes represent surviving manuscripts, unlabeled nodes hypothetical ones. See also stemmatology/stemmatics, Bédier's paradox.

Examples

			For n=3, T_{3,2} is T_{3,0,2} + T_{3,1,2} + T_{3,2,2} where T_{3,0,2} = (3/2) * (binomial(2,(1,1)) * product(g(1,0)*g(1,0))) + 0 = 3; T_{3,1,2} = 0 + 1/2 * ((binomial(3,(2,1)) * product(g(2,0)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,0)))) = 6 and T_{3,2,2} = 0 + (1/2) * ((binomial(3,(2,1)) * product(g(2,1)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,1)))) = 3; 3 + 6 + 3 =12.
		

References

  • J. Bédier. La tradition manuscrite du Lai de l'Ombre: Réflexions sur l'Art d' Éditer les Anciens Textes. Romania 394 (1928), 161-196/321-356.
  • C. Flight. How many stemmata? Manuscripta 34(2), 1990, 122-128.
  • W. Hering. Zweispaltige Stemmata. Philologus-Zeitschrift für antike Literatur und ihre Rezeption 111(1-2), (1967), 170-185.
  • P. Maas. Textkritik. 4. Auflage. Leipzig: Teubner. 1960.

Crossrefs

Cf. A005264, number of labeled rooted Greg trees with n nodes.
Cf. A005263, unrooted Greg trees, according to Flight (1990) can also serve as basis for computation of A005624.

Formula

T_{m,2} = Sum_{n >= 0} T_{m,n,2}, where T_{m,n,k} = (m/k!) * Sum_{(s,p) in C((m-1,n),k)} (binomial(m-1,s) F(s,p)) + (1/k!) * Sum_{(s,p) in C((m,n-1),k)} (binomial(m,s) F(s,p)), with F(s,p) = Product_{1..k} (g(s_i,p_i)), here g(m,n) = numbers of rooted Greg trees, see (A005264) with m labeled and n unlabeled nodes. s and p are tuples with k elements where each s_i >= 1 and for each p_i : 0 <= p_i < s_i; first term in T_{m,n,k} gives the number of trees with a labeled root, second those for root unlabeled.
Showing 1-10 of 10 results.