A005264
Number of labeled rooted Greg trees with n nodes.
Original entry on oeis.org
1, 3, 22, 262, 4336, 91984, 2381408, 72800928, 2566606784, 102515201984, 4575271116032, 225649908491264, 12187240730230528, 715392567595403520, 45349581052869924352, 3087516727770990992896, 224691760916830871873536
Offset: 1
G.f. = x + 3*x^2 + 22*x^3 + 262*x^4 + 4336*x^5 + 91984*x^6 + 2381408*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Israel, Table of n, a(n) for n = 1..358
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- J. Felsenstein, The number of evolutionary trees, Systematic Zoology, 27 (1978), 27-33.
- J. Felsenstein, The number of evolutionary trees, Systematic Zoology, 27 (1978), 27-33. (Annotated scanned copy)
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128.
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128. (Annotated scanned copy)
- C. Flight, Letter to N. J. A. Sloane, Nov 1990
- L. R. Foulds and R. W. Robinson, Determining the asymptotic number of phylogenetic trees, pp. 110-126 of Combinatorial Mathematics VII (Newcastle, August 1979), ed. R. W. Robinson, G. W. Southern and W. D. Wallis. Lect. Notes in Math., 829. Springer, 1980.
- L. R. Foulds & R. W. Robinson, Determining the asymptotic number of phylogenetic trees, Lecture Notes in Math., 829 (1980), 110-126. (Annotated scanned copy)
- Armin Hoenen, Steffen Eger, and Ralf Gehrke, How Many Stemmata with Root Degree k?, Proceedings of the 15th Meeting on the Mathematics of Language, pp. 11-21, 2017.
- D. J. Jeffrey, G. A. Kalugin, and N. Murdoch, Lagrange inversion and Lambert W, Preprint, 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).
- M. Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
- Paul Laubie, Combinatorics of pre-Lie products sharing a Lie bracket, arXiv:2309.05552 [math.QA], 2023. See pp. 1, 5.
- N. J. A. Sloane, Transforms
- N. S. Wedd, Letter to N. J. A. Sloane, N.D.
- Index entries for reversions of series
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
T := proc(n,k) option remember; if k=0 and (n=0 or n=1) then return(1) fi; if k<0 or k>n then return(0) fi;
(n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1) end:
A005264 := proc(n) add(T(n,k)*(-1)^k*2^(n-k-1), k=0..n-1) end;
seq(A005264(n),n=1..17); # Peter Luschny, Nov 10 2012
-
max = 17; f[x_] := -1/2 - ProductLog[-E^(-1/2)*(x + 1)/2]; Rest[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!] (* Jean-François Alcover, May 23 2012, after Peter Bala *)
a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ InverseSeries[ Series[ Exp[-x] (1 + 2 x) - 1, {x, 0, n}]], n]]; (* Michael Somos, Jun 07 2012 *)
-
a(n):=if n=1 then 1 else sum((n+k-1)!*sum(1/(k-j)!*sum(1/(l!*(j-l)!)*sum(((-1)^(i+l)*l^i*binomial(l,n+j-i-1)*2^(n+j-i-1))/i!,i,0,n+j-1),l,1,j),j,1,k),k,1,n-1); /* Vladimir Kruchinin, May 04 2012 */
-
{a(n) = local(A); if( n<1, 0, for( k= 1, n, A += x * O(x^k); A = truncate( (1 + x) * exp(A) - 1 - A) ); n! * polcoeff( A, n))}; /* Michael Somos, Apr 02 2007 */
-
{a(n) = if( n<1, 0, n! * polcoeff( serreverse( exp( -x + x * O(x^n) ) * (1 + 2*x) - 1), n))}; /* Michael Somos, Mar 26 2011 */
-
@CachedFunction
def T(n,k):
if k==0 and (n==0 or n==1): return 1
if k<0 or k>n: return 0
return (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1)
A005264 = lambda n: add(T(n,k)*(-1)^k*2^(n-k-1) for k in (0..n-1))
[A005264(n) for n in (1..17)] # Peter Luschny, Nov 10 2012
A005263
Number of labeled Greg trees.
Original entry on oeis.org
1, 1, 1, 4, 32, 396, 6692, 143816, 3756104, 115553024, 4093236352, 164098040448, 7345463787136, 363154251536896, 19653476190481408, 1155636468524067328, 73364615077878838784, 5001199614295920565248, 364363128390631094137856
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Israel, Table of n, a(n) for n = 0..359
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128.
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128. (Annotated scanned copy)
- C. Flight, Letter to N. J. A. Sloane, Nov 1990
- L. R. Foulds & R. W. Robinson, Determining the asymptotic number of phylogenetic trees, Lecture Notes in Math., 829 (1980), 110-126. (Annotated scanned copy)
- V. Kurauskas, On graphs containing few disjoint excluded minors. Asymptotic number and structure of graphs containing few disjoint minors K_4, arXiv preprint arXiv:1504.08107 [math.CO], V1, Apr 30, 2015; V2, Jul 14 2019.
- Dimitris Papamichail, Angela Huang, Edward Kennedy, Jan-Lucas Ott, Andrew Miller, Georgios Papamichail, Most Compact Parsimonious Trees, arXiv preprint arXiv:1603.03315 [cs.DS], 2016.
- Index entries for sequences related to trees
-
E:= 1/4 -LambertW(-(1+x)*exp(-1/2)/2)^2 - 2*LambertW(-(1+x)*exp(-1/2)/2):
S:= series(E,x,21):
seq(coeff(S,x,j)*j!, j=0..20); # Robert Israel, Mar 28 2017
-
max = 18; b[x] := -1/2 - ProductLog[-Exp[-1/2]*(x+1)/2]; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; sol = SolveAlways[ Normal[ Series[f[x] - (1 + b[x] - b[x]^2), {x, 0, max}]] == 0, x]; First[Table[c[k], {k, 0, max}] /. sol]*Range[0, max]! (* Jean-François Alcover, May 21 2012, from e.g.f. *)
a[ n_] := If[ n < 1, Boole[n == 0], n! SeriesCoefficient[ With[ {B = InverseSeries[ Series[ Exp[-x] (1 + 2 x) - 1, {x, 0, n}]]}, B - B^2], n]] (* Michael Somos, Jun 07 2012 *)
-
{a(n) = local(A); if( n<1, n==0, for( k=1, n, A += x * O(x^k); A = truncate( (1 + x) * exp(A) - 1 - A) ); A += x * O(x^n); A -= A^2; n! * polcoeff( A, n))} /* Michael Somos, Apr 02 2007 */
A048160
Triangle giving T(n,k) = number of (n,k) labeled rooted Greg trees (n >= 1, 0<=k<=n-1).
Original entry on oeis.org
1, 2, 1, 9, 10, 3, 64, 113, 70, 15, 625, 1526, 1450, 630, 105, 7776, 24337, 31346, 20650, 6930, 945, 117649, 450066, 733845, 650188, 329175, 90090, 10395, 2097152, 9492289, 18760302, 20925065, 14194180, 5845455, 1351350, 135135, 43046721
Offset: 1
Triangle begins:
1;
2, 1;
9, 10, 3;
64, 113, 70, 15;
...
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128.
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128. (Annotated scanned copy)
- C. Flight, Letter to N. J. A. Sloane, Nov 1990
- D. J. Jeffrey, G. A. Kalugin, N. Murdoch, Lagrange inversion and Lambert W, Preprint 2015.
- M. Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
t[n_ /; n >= 1, k_ /; k >= 0] /; 0 <= k <= n-1 := t[n, k] = (n+k-2) t[n-1, k-1] + (2n + 2k - 2)*t[n-1, k] + (k+1) t[n-1, k+1]; t[1, 0] = 1; t[, ] = 0; Flatten[Table[t[n, k], {n, 1, 9}, {k, 0, n-1}]] (* Jean-François Alcover, Jul 20 2011, after formula *)
More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
A052300
Number of rooted Greg trees.
Original entry on oeis.org
1, 2, 6, 21, 78, 313, 1306, 5653, 25088, 113685, 523522, 2443590, 11533010, 54949539, 263933658, 1276652682, 6213207330, 30402727854, 149486487326, 738184395770, 3659440942282, 18205043615467, 90856842218506, 454770531433586, 2282393627458496, 11483114908752959
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
seq(a(n), n=1..40); # Alois P. Heinz, Jun 22 2018
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]];
a[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
a /@ Range[1, 40] (* Jean-François Alcover, Oct 02 2019, after Alois P. Heinz *)
A052303
Number of asymmetric Greg trees.
Original entry on oeis.org
1, 1, 0, 0, 0, 0, 1, 4, 12, 42, 137, 452, 1491, 4994, 16831, 57408, 197400, 685008, 2395310, 8437830, 29917709, 106724174, 382807427, 1380058180, 4998370015, 18181067670, 66393725289, 243347195594, 894959868983, 3301849331598, 12217869541117, 45335177297876
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)) :
a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
seq(a(n), n=0..40); # Alois P. Heinz, Jun 22 2018
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
a[n_] := If[n == 0, 1, g[n] - Sum[g[j] g[n - j], {j, 0, n}]];
a /@ Range[0, 40] (* Jean-François Alcover, Apr 28 2020, after Alois P. Heinz *)
A052301
Number of asymmetric rooted Greg trees.
Original entry on oeis.org
1, 1, 2, 5, 14, 43, 138, 455, 1540, 5305, 18546, 65616, 234546, 845683, 3072350, 11235393, 41326470, 152793376, 567518950, 2116666670, 7924062430, 29765741831, 112157686170, 423809991041, 1605622028100, 6097575361683, 23207825593664, 88512641860558
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<1, 1, b(n-1$2)) +b(n, n-1):
seq(a(n), n=1..40); # Alois P. Heinz, Jul 06 2014
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
a[n_] := If[n<1, 1, b[n-1, n-1]] + b[n, n-1];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
A054589
Table related to labeled rooted trees, cycles and binary trees.
Original entry on oeis.org
1, 1, 1, 2, 4, 3, 6, 18, 25, 15, 24, 96, 190, 210, 105, 120, 600, 1526, 2380, 2205, 945, 720, 4320, 13356, 26488, 34650, 27720, 10395, 5040, 35280, 128052, 305620, 507430, 575190, 405405, 135135
Offset: 1
Triangle begins:
{1},
{1, 1},
{2, 4, 3},
{6, 18, 25, 15},
...
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
- William Y. C. Chen, Amy M. Fu, and Elena L. Wang, A Grammatical Calculus for the Ramanujan Polynomials, arXiv:2506.01649 [math.CO], 2025. See p. 3.
- William Y. C. Chen, Larry X. W. Wang, and Arthur L. B. Yang, Recurrence Relations for Strongly q-Log-Convex Polynomials, arXiv:0806.3641v1 [math.CO], 2008.
- Diego Dominici, Nested derivatives: A simple method for Computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- Brian Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
- Dominique Dumont and Armand Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 16).
- D. J. Jeffrey, G. A. Kalugin, and N. Murdoch, Lagrange inversion and Lambert W, Preprint 2015.
- Matthieu Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- Peter W. Shor, A new proof of Cayley's formula for counting labeled trees, J. Combin. Theory Ser. A 71 (1995), no. 1, 154-158.
- Jiang Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan J., 3(1999) 1, 45-54.
-
p[1] = 1; p[n_] := p[n] = Expand[x^2*D[p[n-1], x] + (n-1)(1+x)p[n-1]]; Flatten[ Table[ CoefficientList[ p[n], x], {n, 1, 8}]] (* Jean-François Alcover, Jul 22 2011 *)
Clear[a];
a[1, 0] = 1;
a[n_, k_] /; k < 0 || k >= n := 0
a[n_, k_] /; 0 <= k <= n - 1 :=
a[n, k] = (n - 1) a[n - 1, k] + (n + k - 2) a[n - 1, k - 1]
Table[a[n, k], {n, 20}, {k, 0, n - 1}] (* David Callan, Oct 14 2012 *)
A052302
Number of Greg trees with n black nodes.
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 37, 116, 412, 1526, 5995, 24284, 101619, 434402, 1893983, 8385952, 37637803, 170871486, 783611214, 3625508762, 16906577279, 79395295122, 375217952457, 1783447124452, 8521191260092, 40907997006020, 197248252895597, 954915026282162
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
end:
g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
seq(a(n), n=0..40); # Alois P. Heinz, Jun 22 2018
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
a[n_] := If[n == 0, 1, g[n] - Sum[g[j]*g[n - j], {j, 0, n}]];
a /@ Range[0, 40] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)
Showing 1-8 of 8 results.
Comments