cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A286432 Numbers of labeled rooted Greg trees (A005264) with n nodes and root degree 2.

Original entry on oeis.org

0, 1, 12, 151, 2545, 54466, 1417318, 43472780, 1536228588, 61466251616, 2746907348768, 135619260805568, 7331022129923648, 430638151053316480, 27315015477709844352, 1860627613021322933248, 135465573609158928964096, 10498038569346091127451136, 862792664850194915870874112
Offset: 1

Views

Author

Armin Hoenen, May 09 2017

Keywords

Comments

Numbers of rooted Greg trees with 2 subtrees below root given m labeled nodes (lead index). Among all trees at the same index (see sequence A005264) root bifurcating trees play a central role in philological discourse on the reconstruction of manuscript genealogies. Labeled nodes represent surviving manuscripts, unlabeled nodes hypothetical ones. See also stemmatology/stemmatics, Bédier's paradox.

Examples

			For n=3, T_{3,2} is T_{3,0,2} + T_{3,1,2} + T_{3,2,2} where T_{3,0,2} = (3/2) * (binomial(2,(1,1)) * product(g(1,0)*g(1,0))) + 0 = 3; T_{3,1,2} = 0 + 1/2 * ((binomial(3,(2,1)) * product(g(2,0)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,0)))) = 6 and T_{3,2,2} = 0 + (1/2) * ((binomial(3,(2,1)) * product(g(2,1)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,1)))) = 3; 3 + 6 + 3 =12.
		

References

  • J. Bédier. La tradition manuscrite du Lai de l'Ombre: Réflexions sur l'Art d' Éditer les Anciens Textes. Romania 394 (1928), 161-196/321-356.
  • C. Flight. How many stemmata? Manuscripta 34(2), 1990, 122-128.
  • W. Hering. Zweispaltige Stemmata. Philologus-Zeitschrift für antike Literatur und ihre Rezeption 111(1-2), (1967), 170-185.
  • P. Maas. Textkritik. 4. Auflage. Leipzig: Teubner. 1960.

Crossrefs

Cf. A005264, number of labeled rooted Greg trees with n nodes.
Cf. A005263, unrooted Greg trees, according to Flight (1990) can also serve as basis for computation of A005624.

Formula

T_{m,2} = Sum_{n >= 0} T_{m,n,2}, where T_{m,n,k} = (m/k!) * Sum_{(s,p) in C((m-1,n),k)} (binomial(m-1,s) F(s,p)) + (1/k!) * Sum_{(s,p) in C((m,n-1),k)} (binomial(m,s) F(s,p)), with F(s,p) = Product_{1..k} (g(s_i,p_i)), here g(m,n) = numbers of rooted Greg trees, see (A005264) with m labeled and n unlabeled nodes. s and p are tuples with k elements where each s_i >= 1 and for each p_i : 0 <= p_i < s_i; first term in T_{m,n,k} gives the number of trees with a labeled root, second those for root unlabeled.

A157142 Signed denominators of Leibniz series for Pi/4.

Original entry on oeis.org

1, -3, 5, -7, 9, -11, 13, -15, 17, -19, 21, -23, 25, -27, 29, -31, 33, -35, 37, -39, 41, -43, 45, -47, 49, -51, 53, -55, 57, -59, 61, -63, 65, -67, 69, -71, 73, -75, 77, -79, 81, -83, 85, -87, 89, -91, 93, -95, 97, -99, 101, -103, 105, -107, 109, -111, 113, -115
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 24 2009

Keywords

Comments

Numerators are all 1.
a(n) is also the determinant of the n X n matrix with 1's on the diagonal and 2's elsewhere (cf. A000354). - Jody Nagel (SejeongY(AT)aol.com), May 01 2010

Examples

			G.f.  = 1 - 3*x + 5*x^2 - 7*x^3 + 9*x^4 - 11*x^5 + 13*x^6 - 15*x^7 + 17*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [(2*n + 1) * (-1)^n: n in [0..70]]; // Vincenzo Librandi, Dec 23 2018
  • Mathematica
    a[ n_] := (2*n + 1) * (-1)^n; (* Michael Somos, Nov 21 2022 *)
  • PARI
    {a(n) = (2*n + 1) * (-1)^n};
    

Formula

Euler transform of length 2 sequence [-3, 2]. - Michael Somos, Mar 26 2011
a(n) = b(2*n + 1) where b(n) is completely multiplicative with b(2) = 0, b(p) = p if p == 1 (mod 4), b(p) = -p if p == 3 (mod 4). - Michael Somos, Mar 26 2011
With offset 1 this sequence is the exponential reversion of A005264. - Michael Somos, Mar 26 2011
a(-1 - n) = a(n), a(n + 1) + a(n - 1) = -2*a(n) for all n in Z. - Michael Somos, Mar 26 2011
E.g.f.: (1 - 2*x)*exp(-x). - Michael Somos, Mar 26 2011
a(n) = A005408(n)*A033999(n).
G.f.: (1 - x)/(1 + x)^2 = (1 - x)^3 / (1 - x^2)^2.
a(0) = 1, a(1) = -3, a(n) = -2*a(n-1) - a(n-2) for n >= 2.
Sum_{n=0..inf} 1/a(n) = Pi/4.

A005172 Number of labeled rooted trees of subsets of an n-set.

Original entry on oeis.org

1, 4, 32, 416, 7552, 176128, 5018624, 168968192, 6563282944, 288909131776, 14212910809088, 772776684683264, 46017323176296448, 2978458881388183552, 208198894960190160896, 15631251601179130462208, 1254492810303112820555776, 107174403941451434687463424, 9711022458989438255300083712
Offset: 1

Views

Author

Keywords

Comments

Each node is a subset of the labeled set {1,...,n}. If the subset node is empty, it must have at least two children.
John W. Layman observes that this is the Stirling transform of A005264.

Examples

			x + 4*x^2 + 32*x^3 + 416*x^4 + 7552*x^5 + 176128*x^6 + 5018624*x^7 + ...
D^3(1) = 32*(12*x^2+28*x+13)/(2*x-1)^6. Evaluated at x = 0 this gives a(4) = 416.
From _Peter Bala_, Sep 06 2011: (Start)
a(3) = 32: The 32 increasing plane trees on 3 vertices with vertices of outdegree k coming in 2^(k+1) colors are
.
           1(x4 colors)      1(x8 colors)      1(x8 colors)
           |                / \               / \
           2(x4 colors)    2   3             3   2
           |
           3
.
  Totals: 16        +        8        +        8     = 32.   (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.26.

Crossrefs

See A225170 for another version.

Programs

  • Maple
    with(combinat); A005172 := n -> add(eulerian2(n-1,k)*2^(2*n-k-2),k=0..n-1): seq(A005172(n), n=1..16); # Peter Luschny, Nov 10 2012
    A005172_list := proc(len) local A, n; A[1] := 1; for n from 2 to len do
    A[n] := 2*A[n-1] + add(binomial(n,j)*A[j]*A[n-j], j=1..n-1) od:
    convert(A,list) end: A005172_list(19); # Peter Luschny, May 24 2017
  • Mathematica
    max = 16; g[x_] := -1/2 - ProductLog[-E^(-1/2 + x)/2]; Drop[ CoefficientList[ Series[ g[x], {x, 0, max}], x]*Range[0, max]!, 1](* Jean-François Alcover, Nov 17 2011, after 1st e.g.f. *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ -1/2 - ProductLog[ -Exp[ -1/2 + z] / 2], {z, 0, n}]] (* Michael Somos, Jun 07 2012 *)
    a[1] = 1; a[n_] := (Sum[(n + k - 1)!*Sum[(-1)^j/(k - j)!*Sum[(-1)^i*2^(n - i + j - 1)*StirlingS1[n - i + j - 1, j - i]/((n - i + j - 1)!*i!), {i, 0, j}], {j, 1, k}], {k, 1, n - 1}]);
    Array[a, 20] (* Jean-François Alcover, Jun 24 2018, after Vladimir Kruchinin *)
    Eulerian2[n_, k_] := Eulerian2[n, k] = If[k == 0, 1, If[k == n, 0, Eulerian2[n-1, k] (k + 1) + Eulerian2[n - 1, k - 1] (2n - k - 1)]]; A005172[n_] := Sum[Eulerian2[n - 1, k] 2^(2 n - k - 2), {k, 0, n - 1}]; Table[A005172[n], {n, 19}] (* Peter Luschny, Jun 24 2018 *)
  • Maxima
    a(n):=if n=1 then 1 else (sum((n+k-1)!*sum((-1)^j/(k-j)!*sum((-1)^i*2^(n-i+j-1)*stirling1(n-i+j-1,j-i)/((n-i+j-1)!*i!),i,0,j),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Jan 30 2012 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=1+intformal(A*(1+A+x*O(x^n))^2));n!*polcoeff(A,n)} \\ Paul D. Hanna, Sep 06 2008
    
  • PARI
    N=66; x='x+O('x^N);
    Q(k)=if(k>N,1,1-2*(k+1)*x-2*x*(k+1)/Q(k+1));
    gf=1/Q(0);  Vec(gf) \\ Joerg Arndt, May 01 2013
  • Sage
    @CachedFunction
    def eulerian2(n, k):
        if k==0: return 1
        elif k==n: return 0
        return eulerian2(n-1, k)*(k+1)+eulerian2(n-1, k-1)*(2*n-k-1)
    A005172 = lambda n: add(eulerian2(n-1,k)*2^(2*n-k-2) for k in (0..n-1))
    [A005172(n) for n in (1..16)]  # Peter Luschny, Nov 10 2012
    

Formula

E.g.f.: -1/2 - LambertW ( - exp( -1/2 + x) / 2 ).
E.g.f.: A(x) = 1 + Integral A(x)*(1 + A(x))^2 dx. - Paul D. Hanna, Sep 06 2008
From Peter Bala, Sep 06 2011: (Start)
The generating function A(x) = x+4*x^2/2!+32*x^3/3!+... satisfies the autonomous differential equation A'(x) = (1+2*A)/(1-2*A) with A(0) = 0. Hence the inverse function A^-1(x) = Integral_{t = 0..x} (1-2*t)/(1+2*t) dt = log(1+2*x)-x.
The expansion of A(x) can be found by inverting the above integral using the method of [Dominici, Theorem 4.1] to arrive at the result a(n) = D^(n-1)(1) evaluated at x = 0, where D denotes the operator g(x) -> d/dx((1+2*x)/(1-2*x)*g(x)). Compare with A032188.
Applying [Bergeron et al., Theorem 1] to the result x = Integral_{t = 0..A(x)} 1/phi(t) dt, where phi(t) = (1+2*t)/(1-2*t) = 1+4*t+8*t^2+16*t^3+32*t^4+... leads to the following combinatorial interpretation for this sequence: a(n) gives the number of plane increasing trees on n vertices where each vertex of outdegree k >= 1 can be colored in 2^(k+1) ways. An example is given below. (End)
a(n) = Sum_{k=1..n-1} (n+k-1)!*Sum_{j=1..k} (-1)^j/(k-j)!*Sum_{i=0..j} (-1)^i* 2^(n-i+j-1)*Stirling1(n-i+j-1,j-i)/((n-i+j-1)!*i!), n>1, a(1)=1. - Vladimir Kruchinin, Jan 30 2012
Let p(n,w) = w*Sum_{k=0..n-1}((-1)^k*E2(n-1,k)*w^k)/(1+w)^(2*n-1), E2 the second-order Eulerian numbers as defined by Knuth, then a(n) = -p(n,-1/2). - Peter Luschny, Nov 10 2012
a(n) ~ (2/(2*log(2)-1))^(n-1/2)*n^(n-1)/exp(n). - Vaclav Kotesovec, Jan 05 2013
G.f.: 1/Q(0), where Q(k)= 1 - 2*(k+1)*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) = 2*a(n-1) + Sum_{j=1..n-1} binomial(n,j)*a(j)*a(n-j) for n>1, a(1) = 1. - Peter Luschny, May 24 2017
a(1) = 1; a(n) = n! * [x^n] exp(x + Sum_{k=1..n-1} a(k)*x^k/k!). - Ilya Gutkovskiy, Oct 18 2017

A005263 Number of labeled Greg trees.

Original entry on oeis.org

1, 1, 1, 4, 32, 396, 6692, 143816, 3756104, 115553024, 4093236352, 164098040448, 7345463787136, 363154251536896, 19653476190481408, 1155636468524067328, 73364615077878838784, 5001199614295920565248, 364363128390631094137856
Offset: 0

Views

Author

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and labeled and the white nodes are of degree at least 3.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    E:= 1/4 -LambertW(-(1+x)*exp(-1/2)/2)^2 - 2*LambertW(-(1+x)*exp(-1/2)/2):
    S:= series(E,x,21):
    seq(coeff(S,x,j)*j!, j=0..20); # Robert Israel, Mar 28 2017
  • Mathematica
    max = 18; b[x] := -1/2 - ProductLog[-Exp[-1/2]*(x+1)/2]; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; sol = SolveAlways[ Normal[ Series[f[x] - (1 + b[x] - b[x]^2), {x, 0, max}]] == 0, x]; First[Table[c[k], {k, 0, max}] /. sol]*Range[0, max]! (* Jean-François Alcover, May 21 2012, from e.g.f. *)
    a[ n_] := If[ n < 1, Boole[n == 0], n! SeriesCoefficient[ With[ {B =      InverseSeries[ Series[ Exp[-x] (1 + 2 x) - 1, {x, 0, n}]]}, B - B^2], n]] (* Michael Somos, Jun 07 2012 *)
  • PARI
    {a(n) = local(A); if( n<1, n==0, for( k=1, n, A += x * O(x^k); A = truncate( (1 + x) * exp(A) - 1 - A) ); A += x * O(x^n); A -= A^2; n! * polcoeff( A, n))} /* Michael Somos, Apr 02 2007 */

Formula

E.g.f.: 1 + B(x) - B(x)^2 where B(x) is e.g.f. of A005264.
a(n) ~ n^(n-2) / (sqrt(2) * exp(n/2) * (2-exp(1/2))^(n-3/2)). - Vaclav Kotesovec, Jul 09 2013
E.g.f.: 1/4 - W(-(1+x)*exp(-1/2)/2)^2 - 2*W(-(1+x)*exp(-1/2)/2) where W is the Lambert W function. - Robert Israel, Mar 28 2017

Extensions

More terms, formula and comment from Christian G. Bower, Nov 15 1999

A048160 Triangle giving T(n,k) = number of (n,k) labeled rooted Greg trees (n >= 1, 0<=k<=n-1).

Original entry on oeis.org

1, 2, 1, 9, 10, 3, 64, 113, 70, 15, 625, 1526, 1450, 630, 105, 7776, 24337, 31346, 20650, 6930, 945, 117649, 450066, 733845, 650188, 329175, 90090, 10395, 2097152, 9492289, 18760302, 20925065, 14194180, 5845455, 1351350, 135135, 43046721
Offset: 1

Views

Author

Keywords

Comments

An (n,k) rooted Greg tree can be described as a rooted tree with n black nodes and k white nodes where only the black nodes are labeled and the white nodes have at least 2 children. - Christian G. Bower, Nov 15 1999

Examples

			Triangle begins:
  1;
  2, 1;
  9, 10, 3;
  64, 113, 70, 15;
  ...
		

Crossrefs

Row sums give A005264. Cf. A005263, A048159, A052300-A052303. A054589.

Programs

  • Mathematica
    t[n_ /; n >= 1, k_ /; k >= 0] /; 0 <= k <= n-1 := t[n, k] = (n+k-2) t[n-1, k-1] + (2n + 2k - 2)*t[n-1, k] + (k+1) t[n-1, k+1]; t[1, 0] = 1; t[, ] = 0; Flatten[Table[t[n, k], {n, 1, 9}, {k, 0, n-1}]] (* Jean-François Alcover, Jul 20 2011, after formula *)

Formula

T(n, 0)=n^(n-1), T(n, k)=(n+k-2)*T(n-1, k-1)+(2*n+2*k-2)*T(n-1, k)+(k+1)*T(n-1, k+1).
From Peter Bala, Sep 29 2011: (Start)
E.g.f.: compositional inverse with respect to x of t*(exp(-x)-1) + (1+t)*x*exp(-x) = compositional inverse with respect to x of (x - (2+t)*x^2/2! + (3+2*t)*x^3/3! - (4+3*t)*x^4/4! + ...) = x + (2+t)*x^2/2! + (9+10*t+3*t^2)*x^3/3! + ....
The row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) = (1+t)^2*R'(n,t)+n*(2+t)*R(n,t) with R(1,t) = 1.
The shifted row polynomials R(n,t-1) are the row generating polynomials of A054589. (End)
From Peter Bala, Sep 12 2012: (Start)
It appears that the entries in column k = 1 are given by T(n,1) = (n+1)^n - 2*n^n (checked up to n = 15) - see A176824.
Assuming this, we could then use the recurrence equation to obtain explicit formulas for columns k = 2,3,....
For example, T(n,2) = 1/2*{(n+2)^(n+1) - 4*(n+1)^(n+1) + (4*n+3)*n^n}. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000

A048159 Triangle giving a(n,k) = number of (n,k) labeled Greg trees (n >= 2, 0 <= k <= n-2).

Original entry on oeis.org

1, 3, 1, 16, 13, 3, 125, 171, 85, 15, 1296, 2551, 2005, 735, 105, 16807, 43653, 47586, 26950, 7875, 945, 262144, 850809, 1195383, 924238, 412650, 100485, 10395, 4782969, 18689527, 32291463, 31818045, 19235755, 7113645, 1486485, 135135
Offset: 2

Views

Author

Keywords

Comments

An (n,k) Greg tree can be described as a tree with n black nodes and k white nodes where only the black nodes are labeled and the white nodes are of degree at least 3.
Row sums give A005263.

Examples

			Triangle begins
    1;
    3,   1;
   16,  13,   3;
  125, 171,  85,  15;
  ...
		

Crossrefs

Programs

  • Mathematica
    a[n_, 0] := n^(n-2); a[n_ /; n >= 2, k_] /; 0 <= k <= n-2 := a[n, k] = (n+k-3)*a[n-1, k-1] + (2*n+2*k-3)*a[n-1, k] + (k+1)*a[n-1, k+1]; a[n_, k_] = 0; Table[a[n, k], {n, 2, 9}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Oct 03 2013 *)

Formula

a(n, 0) = n^(n-2), a(n, k) = (n+k-3)*a(n-1, k-1) + (2n+2k-3)*a(n-1, k) + (k+1)*a(n-1, k+1).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000

A052300 Number of rooted Greg trees.

Original entry on oeis.org

1, 2, 6, 21, 78, 313, 1306, 5653, 25088, 113685, 523522, 2443590, 11533010, 54949539, 263933658, 1276652682, 6213207330, 30402727854, 149486487326, 738184395770, 3659440942282, 18205043615467, 90856842218506, 454770531433586, 2282393627458496, 11483114908752959
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A rooted Greg tree can be described as a rooted tree with 2-colored nodes where only the black nodes are counted and the white nodes have at least 2 children.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]];
    a[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a /@ Range[1, 40] (* Jean-François Alcover, Oct 02 2019, after Alois P. Heinz *)

Formula

Satisfies a = EULER(a) + SHIFT_RIGHT(EULER(a)) - a.
a(n) ~ c * d^n / n^(3/2), where d = 5.33997181362574740496306748840603859910694551382103293340704... and c = 0.18146848896221859476228524468003196434835879494225205... - Vaclav Kotesovec, Jun 11 2021

A052303 Number of asymmetric Greg trees.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 4, 12, 42, 137, 452, 1491, 4994, 16831, 57408, 197400, 685008, 2395310, 8437830, 29917709, 106724174, 382807427, 1380058180, 4998370015, 18181067670, 66393725289, 243347195594, 894959868983, 3301849331598, 12217869541117, 45335177297876
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and the white nodes are of degree at least 3.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)) :
    a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
    g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a[n_] := If[n == 0, 1, g[n] - Sum[g[j] g[n - j], {j, 0, n}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 28 2020, after Alois P. Heinz *)

Formula

G.f.: 1+B(x)-B(x)^2 where B(x) is g.f. of A052301.

A052301 Number of asymmetric rooted Greg trees.

Original entry on oeis.org

1, 1, 2, 5, 14, 43, 138, 455, 1540, 5305, 18546, 65616, 234546, 845683, 3072350, 11235393, 41326470, 152793376, 567518950, 2116666670, 7924062430, 29765741831, 112157686170, 423809991041, 1605622028100, 6097575361683, 23207825593664, 88512641860558
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A rooted Greg tree can be described as a rooted tree with 2-colored nodes where only the black nodes are counted and the white nodes have at least 2 children.

Crossrefs

Essentially the same as A031148. Cf. A005263, A005264, A048159, A048160, A052300-A052303.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<1, 1, b(n-1$2)) +b(n, n-1):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<1, 1, b[n-1, n-1]] + b[n, n-1];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

Satisfies a = WEIGH(a) + SHIFT_RIGHT(WEIGH(a)) - a.
a(n) ~ c * d^n / n^(3/2), where d = 4.0278584853545190803008179085023154..., c = 0.14959176868229550510957320468... . - Vaclav Kotesovec, Sep 12 2014

A052302 Number of Greg trees with n black nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 37, 116, 412, 1526, 5995, 24284, 101619, 434402, 1893983, 8385952, 37637803, 170871486, 783611214, 3625508762, 16906577279, 79395295122, 375217952457, 1783447124452, 8521191260092, 40907997006020, 197248252895597, 954915026282162
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and the white nodes are of degree at least 3.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
    a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
        Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a[n_] := If[n == 0, 1, g[n] - Sum[g[j]*g[n - j], {j, 0, n}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) - B(x)^2 where B(x) is g.f. of A052300.
Showing 1-10 of 12 results. Next