A377226 Take the sequence of the signed denominators of Leibniz series for Pi/4 (cf. A157142) and permute the terms so that a negative term follows every two positive terms and the absolute difference between two consecutive terms of the same sign is 4.
1, 5, -3, 9, 13, -7, 17, 21, -11, 25, 29, -15, 33, 37, -19, 41, 45, -23, 49, 53, -27, 57, 61, -31, 65, 69, -35, 73, 77, -39, 81, 85, -43, 89, 93, -47, 97, 101, -51, 105, 109, -55, 113, 117, -59, 121, 125, -63, 129, 133, -67, 137, 141, -71, 145, 149, -75, 153, 157, -79, 161
Offset: 0
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Programs
-
Mathematica
LinearRecurrence[{0,0,2,0,0,-1},{1,5,-3,9,13,-7},61]
Formula
a(n) = 2*a(n-3) - a(n-6) for n > 5.
G.f.: (1 + 5*x - 3*x^2 + 7*x^3 + 3*x^4 - x^5)/(1 - x^3)^2.
E.g.f.: exp(-x/2)*(3*exp(3*x/2)*(3 + 4*x) + 12*x*cos(sqrt(3)*x/2) + 4*sqrt(3)*(2 - 3*x)*sin(sqrt(3)*x/2))/9.
Sum_{n>=0} 1/a(n) = (log(2) + Pi)/4 = A377227.
Comments