A244420
Numerators of coefficient triangle for expansion of x^n in terms of polynomials Todd(k, x) = T(2*k+1, sqrt(x))/sqrt(x) (A084930), with the Chebyshev polynomials of the first kind (type T).
Original entry on oeis.org
1, 3, 1, 5, 5, 1, 35, 21, 7, 1, 63, 21, 9, 9, 1, 231, 165, 165, 55, 11, 1, 429, 1287, 715, 143, 39, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 12155, 2431, 1547, 1547, 595, 85, 17, 17, 1, 46189, 37791, 12597, 6783, 2907, 969, 969, 171, 19, 1, 88179, 146965, 101745, 14535, 6783, 20349, 5985, 665, 105, 21, 1
Offset: 0
The numerator triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 3 1
2: 5 5 1
3: 35 21 7 1
4: 63 21 9 9 1
5: 231 165 165 55 11 1
6: 429 1287 715 143 39 13 1
7: 6435 5005 3003 1365 455 105 15 1
8: 12155 2431 1547 1547 595 85 17 17 1
9: 46189 37791 12597 6783 2907 969 969 171 19 1
...
The rational triangle R(n,m) begins:
n\m 0 1 2 3 4 5
0: 1
1: 3/4 1/4
2: 5/8 5/16 1/16
3: 35/64 21/64 7/64 1/64
4: 63/128 21/64 9/64 9/256 1/256
5: 231/512 165/512 165/1024 55/1024 11/1024 1/1024
...
The next rows are:
n=6: 429/1024, 1287/4096, 715/4096, 143/2048, 39/2048, 13/4096, 1/4096,
n=7: 6435/16384, 5005/16384, 3003/16384, 1365/16384, 455/16384, 105/16384, 15/16384, 1/16384,
n=8: 12155/32768, 2431/8192, 1547/8192, 1547/16384, 595/16384, 85/8192, 17/8192, 17/65536, 1/65536,
n=9: 46189/131072, 37791/131072, 12597/65536, 6783/65536, 2907/65536, 969/65536, 969/262144, 171/262144, 19/262144, 1/262144,
...
Expansions:
x^2 = 5/8 * Todd(0,x) + 5/16 * Todd(1,x) + 1/16 * Todd(2,x) = 5/8 + (5/16)*(-3 + 4*x) +(1/16)*(5 -20*x + 16*x^2).
x^3 = (35*Todd(0, x) + 21*Todd(1, x) + 7*Todd(2, x) + 1*Todd(3, x))/64 = (35 + 21*(-3+4*x) + 7*( 5-20*x+16*x^2) + (-7+56*x-112*x^2+64*x^3))/64.
For the Todd polynomials see the coefficient table A084930.
A244421
Denominators of coefficient triangle for expansion of x^n in terms of polynomials Todd(k,x) = T(2*k+1, sqrt(x))/sqrt(x) (A084930), with the Chebyshev T-polynomials.
Original entry on oeis.org
1, 4, 4, 8, 16, 16, 64, 64, 64, 64, 128, 64, 64, 256, 256, 512, 512, 1024, 1024, 1024, 1024, 1024, 4096, 4096, 2048, 2048, 4096, 4096, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 16384, 32768, 8192, 8192, 16384, 16384, 8192, 8192, 65536, 65536, 131072, 131072, 65536, 65536, 65536, 65536, 262144, 262144, 262144, 262144, 262144, 524288, 524288, 131072, 131072, 1048576, 1048576, 524288, 524288, 1048576, 1048576
Offset: 0
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 ...
0: 1
1: 4 4
2: 8 16 16
3: 64 64 64 64
4: 128 64 64 256 256
5: 512 512 1024 1024 1024 1024
6: 1024 4096 4096 2048 2048 4096 4096
...
For more rows see the link.
For the rational triangle R(n,m) see the example section of A244420.
Expansion: x^3 = (35*Todd(0, x) + 21*Todd(1, x) + 7*Todd(2, x) + 1*Todd(3, x))/64 = (35 + 21*(-3+4*x) + 7*( 5-20*x+16*x^2) + (-7+56*x-112*x^2+64*x^3))/64. For the Todd polynomials see A084930.
A000330
Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.
Original entry on oeis.org
0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0
G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
- H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
- J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
- M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
- Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.
- Felix Fröhlich, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- L. Ancora, Quadrature of the Parabola with the Square Pyramidal Number, Mondadori Education, Archimede 66, No. 3, 139-144 (2014).
- Jack Anderson, Amy Woodall, and Alexandru Zaharescu, Arithmetic Polygons and Sums of Consecutive Squares, arXiv:2411.08398 [math.NT], 2024.
- Ben Babcock and Adam Van Tuyl, Revisiting the spreading and covering numbers, arXiv preprint arXiv:1109.5847 [math.AC], 2011.
- Joshua L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- Joshua L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Michael A. Bennett, Lucas' square pyramid problem revisited, Acta Arithmetica 105 (2002), 341-347.
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Fritz Beukers and Jaap Top, On oranges and integral points on certain plane cubic curves, Nieuw Arch. Wiskd., IV (1988), Ser. 6, No. 3, 203-210.
- Henry Bottomley, Illustration of initial terms.
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, p=1 in first displayed equation page 4.
- Bikash Chakraborty, Proof Without Words: Sums of Powers of Natural numbers, arXiv:2012.11539 [math.HO], 2020.
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, and Darleen Perez-Lavin, Peaks Sets of Classical Coxeter Groups, arXiv preprint arXiv:1505.04479 [math.GR], 2015.
- Anji Dong, Katerina Saettone, Kendra Song, and Alexandru Zaharescu, Cannonball Polygons with Multiplicities, arXiv:2507.18057 [math.NT], 2025. See p. 1.
- Michael Dougherty, Christopher French, Benjamin Saderholm, and Wenyang Qian, Hankel Transforms of Linear Combinations of Catalan Numbers, Journal of Integer Sequences, Vol. 14 (2011), Article 11.5.1.
- David Galvin and Courtney Sharpe, Independent set sequence of linear hyperpaths, arXiv:2409.15555 [math.CO], 2024. See p. 7.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- T. Aaron Gulliver, Sequences from hexagonal pyramid of integers, International Mathematical Forum, Vol. 6, 2011, no. 17, p. 821-827.
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- R. Jovanovic, First 2500 Pyramidal numbers.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 9, 13-15, 24.
- R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- Toufik Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- Cleve Moler, LINPACK subroutine sgefa.f, University of New Mexico, Argonne National Lab, 1978.
- Michael Penn, Counting on a chessboard., YouTube video, 2021.
- Claudio de J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Torsten Sillke, Square Counting.
- Think Twice, Sum of n squares | explained visually |, video (2017).
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- G. N. Watson, The problem of the square pyramid, Messenger of Mathematics 48 (1918), pp. 1-22.
- Eric Weisstein's World of Mathematics, Faulhaber's Formula.
- Eric Weisstein's World of Mathematics, Square Pyramidal Number.
- Eric Weisstein's World of Mathematics, Square Tiling.
- Eric Weisstein's World of Mathematics, Power Sum.
- Wikipedia, Faulhaber's formula.
- G. Xiao, Sigma Server, Operate on"n^2".
- Index entries for "core" sequences.
- Index to sequences related to pyramidal numbers.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for two-way infinite sequences.
Cf.
A000217,
A000292,
A000537,
A005408,
A006003,
A006331,
A033994,
A033999,
A046092,
A050409,
A050446,
A050447,
A060493,
A100157,
A132124,
A132112,
A156921,
A157702,
A258708,
A351105,
A351830.
Sums of 2 consecutive terms give
A005900.
Cf.
A253903 (characteristic function).
Cf.
A034705 (differences of any two terms).
-
List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
-
a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
a000330_list = scanl1 (+) a000290_list
-- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
-
[n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
-
[0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
-
A000330 := n -> n*(n+1)*(2*n+1)/6;
a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
-
Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
-
A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
-
{a(n) = n * (n+1) * (2*n+1) / 6};
-
upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
-
a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
-
[n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
A111418
Right-hand side of odd-numbered rows of Pascal's triangle.
Original entry on oeis.org
1, 3, 1, 10, 5, 1, 35, 21, 7, 1, 126, 84, 36, 9, 1, 462, 330, 165, 55, 11, 1, 1716, 1287, 715, 286, 78, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 92378, 75582, 50388
Offset: 0
From _Wolfdieter Lang_, Aug 05 2014: (Start)
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 3 1
2: 10 5 1
3: 35 21 7 1
4: 126 84 36 9 1
5: 462 330 165 55 11 1
6: 1716 1287 715 286 78 13 1
7: 6435 5005 3003 1365 455 105 15 1
8: 24310 19448 12376 6188 2380 680 136 17 1
9: 92378 75582 50388 27132 11628 3876 969 171 19 1
10: 352716 293930 203490 116280 54264 20349 5985 1330 210 21 1
...
Expansion examples (for the Todd polynomials see A084930 and a comment above):
(4*x)^2 = 10*Todd(n, 0) + 5*Todd(n, 1) + 1*Todd(n, 2) = 10*1 + 5*(-3 + 4*x) + 1*(5 - 20*x + 16*x^2).
(4*x)^3 = 35*1 + 21*(-3 + 4*x) + 7*(5 - 20*x + 16*x^2) + (-7 + 56*x - 112*x^2 +64*x^3)*1. (End)
---------------------------------------------------------------------
Production matrix is
3, 1,
1, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 0, 1, 2, 1
- _Paul Barry_, Mar 08 2011
Application to odd powers of Fibonacci numbers F, row n=2:
F_l^5 = (10*(-1)^(2*(l+1))*F_l + 5*(-1)^(1*(l+1))*F_{3*l} + 1*F_{5*l})/5^2, l >= 0. - _Wolfdieter Lang_, Aug 24 2012
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012.
- A. Nkwanta, A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- Sun, Yidong; Ma, Luping Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
-
a111418 n k = a111418_tabl !! n !! k
a111418_row n = a111418_tabl !! n
a111418_tabl = map reverse a122366_tabl
-- Reinhard Zumkeller, Mar 14 2014
-
Table[Binomial[2*n+1, n-k], {n,0,10}, {k,0,n}] (* G. C. Greubel, May 22 2017 *)
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 3, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
A050486
a(n) = binomial(n+6,6)*(2n+7)/7.
Original entry on oeis.org
1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 17875, 30888, 51272, 82212, 127908, 193800, 286824, 415701, 591261, 826804, 1138500, 1545830, 2072070, 2744820, 3596580, 4665375, 5995431, 7637904, 9651664, 12104136, 15072200, 18643152, 22915728, 28001193
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Milan Janjic, Two Enumerative Functions
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 15, 17.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
[Binomial(n+6, 6) + 2*Binomial(n+6, 7): n in [0..35]]; // Vincenzo Librandi, Jun 09 2013
-
A050486:=n->binomial(n+6,6)*(2*n+7)/7: seq(A050486(n), n=0..50); # Wesley Ivan Hurt, Jan 01 2016
-
CoefficientList[Series[(1 + x) / (1 - x)^8, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
Table[SeriesCoefficient[(1 + x)/(1 - x)^8, {x, 0, n}], {n, 0, 28}] (* or *)
Table[Binomial[n + 6, 6] (2 n + 7)/7, {n, 0, 30}] (* Michael De Vlieger, Dec 31 2015 *)
-
a(n)=binomial(n+6,6)*(2*n+7)/7 \\ Charles R Greathouse IV, Sep 24 2015
-
A050486_list, m = [], [2]+[1]*7
for _ in range(10**2):
A050486_list.append(m[-1])
for i in range(7):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
A098597
Numerator of Catalan(n)/2^(2n+1). Also, numerators of (2n-1)!!/(n+1)!. Odd part of the n-th Catalan number.
Original entry on oeis.org
1, 1, 1, 5, 7, 21, 33, 429, 715, 2431, 4199, 29393, 52003, 185725, 334305, 9694845, 17678835, 64822395, 119409675, 883631595, 1641030105, 6116566755, 11435320455, 171529806825, 322476036831, 1215486600363, 2295919134019, 17383387729001, 32968493968795, 125280277081421
Offset: 0
1/(1 + sqrt(1-x)) = 1/2 + 1/8*x + 1/16*x^2 + 5/128*x^3 + 7/256*x^4 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- T. Copeland, Addendum to Elliptic Lie Triad
-
[Numerator(Catalan(n)/2^(2*n+1)):n in [0..30]]; // Vincenzo Librandi, Jan 14 2016
-
a:= n-> abs(numer(binomial(1/2, n+1))): seq(a(n), n=0..50); # Alois P. Heinz, Apr 10 2009
-
Table[Numerator[CatalanNumber[n]/2^(2n+1)],{n,0,30}] (* Harvey P. Dale, Jul 27 2011 *)
A098597[n_] := With[{c = CatalanNumber[n]}, c / 2^IntegerExponent[c, 2]];
Table[A098597[n], {n, 0, 29}] (* Peter Luschny, Apr 16 2024 *)
-
{a(n) = if( n < 0, 0, numerator(polcoeff(1 / (1 + sqrt(1 - x + x * O(x^n))), n)))};
A082985
Coefficient table for Chebyshev's U(2*n,x) polynomial expanded in decreasing powers of (-4*(1-x^2)).
Original entry on oeis.org
1, 1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 27, 30, 9, 1, 11, 44, 77, 55, 11, 1, 13, 65, 156, 182, 91, 13, 1, 15, 90, 275, 450, 378, 140, 15, 1, 17, 119, 442, 935, 1122, 714, 204, 17, 1, 19, 152, 665, 1729, 2717, 2508, 1254, 285, 19
Offset: 0
Expansion of polynomials:
x^0;
x^2 - 3*x^0;
x^4 - 5*x^2 + 5*x^0;
x^6 - 7*x^4 + 14*x^2 - 7*x^0;
x^8 - 9*x^6 + 27*x^4 - 30*x^2 + 9*x^0;
x^10 - 11*x^8 + 44*x^6 - 77*x^4 + 55*x^2 - 11*x^0; ...
Polynomial #4 has 8 roots: 2*sin(2*Pi*k/9) for k=1 to 8.
Coefficients (with signs removed) are
1;
1, 3;
1, 5, 5;
1, 7, 14, 7;
1, 9, 27, 30, 9;
1, 11, 44, 77, 55, 11;
...
- J. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, 1992; see pp. 151,175.
- Stephen Eberhart, "Mathematical-Physical Correspondence," Number 37-38, Jan 08, 1982.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- Vincenzo Librandi, Rows n = 0..100 of triangle, flattened
- K. Dilcher and K. B. Stolarsky, A Pascal-type triangle characterizing twin primes, Amer. Math. Monthly, 112 (2005), 673-681.
- Zhi-Hong Sun, Expansions and identities concerning Lucas sequences, Fibonacci Quart. 44 (2006), no. 2, 145-153. See Theorem 3.1
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) ))); # G. C. Greubel, Dec 30 2019
-
[Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 30 2019
-
A082985 := proc(n,m)
binomial(2*n-m,m)*(2*n+1)/(2*n-2*m+1) ;
end proc: # R. J. Mathar, Sep 08 2013
-
T[n_, m_]:= Binomial[2*n-m, m]*(2*n+1)/(2*n-2*m+1); Table[T[n, m], {n, 0, 9}, {m, 0, n}]//Flatten (* Jean-François Alcover, Oct 08 2013, after R. J. Mathar *)
-
T(n,k)=binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1); \\ G. C. Greubel, Dec 30 2019
-
[[binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 30 2019
Edited by Anne Donovan (anned3005(AT)aol.com), Jun 11 2003
A127674
Coefficient table for Chebyshev polynomials T(2*n,x) (increasing even powers x, without zeros).
Original entry on oeis.org
1, -1, 2, 1, -8, 8, -1, 18, -48, 32, 1, -32, 160, -256, 128, -1, 50, -400, 1120, -1280, 512, 1, -72, 840, -3584, 6912, -6144, 2048, -1, 98, -1568, 9408, -26880, 39424, -28672, 8192, 1, -128, 2688, -21504, 84480, -180224, 212992, -131072, 32768, -1, 162, -4320, 44352, -228096, 658944, -1118208
Offset: 0
[1];
[-1,2];
[1,-8,8];
[-1,18,-48,32];
[1,-32,160,-256,128];
...
See a link for the row polynomials.
The T-polynomial for row n=3, [-1,18,-48,32], is T(2*3,x) = -1*x^0 + 18*x^2 - 48*x^4 + 32*x^6.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. p. 37, eq.(1.96) and p. 4. eq.(1.10).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 795.
- F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.
- G. Boros, V. H. Moll, Landen transformations and the integration of rational functions, Math. Comp. 71 (238) (2001) 649-668, absolute values in Lemma A.3.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages) See p. 516.
- Wolfdieter Lang, Row polynomials.
- Richard J. Mathar, Chebyshev approximation of x^m (-log x)^l in the interval 0 <= x <= 1, arXiv:2408.15212 [math.CA], 2024. See p. 1.
- Index entries for sequences related to Chebyshev polynomials.
Cf.
A075733 (different signs and offset).
A084930 (coefficients of odd-indexed T-polynomials).
Cf.
A053120 (coefficients of T-polynomials, with interspersed zeros).
A127675
Coefficient table for Chebyshev's U(2*n,x) polynomials in decreasing powers of (1-x^2).
Original entry on oeis.org
1, -4, 3, 16, -20, 5, -64, 112, -56, 7, 256, -576, 432, -120, 9, -1024, 2816, -2816, 1232, -220, 11, 4096, -13312, 16640, -9984, 2912, -364, 13, -16384, 61440, -92160, 70400, -28800, 6048, -560, 15, 65536, -278528, 487424, -452608, 239360, -71808, 11424, -816, 17, -262144, 1245184
Offset: 0
[1];[ -4,3];[16,-20,5];[ -64,112,-56,7];[256,-576,432,-120,9]; ...
Row n=3: -64*(1-x^2)^3+ 112*(1-x^2)^2 -56*(1-x^2)^1 + 7 = 64*x^6 - 80*x^4 + 24* x^2 -1 =U(6,x).
Row n=3: sin(7*phi)=-64*sin(phi)^7 + 112*sin(phi)^5 - 56*sin(phi)^3 + 7*sin(phi).
Cf.
A082985 (scaled coefficient table).
Showing 1-9 of 9 results.
Comments