A172431
Even row Pascal-square read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 4, 3, 1, 6, 10, 4, 1, 8, 21, 20, 5, 1, 10, 36, 56, 35, 6, 1, 12, 55, 120, 126, 56, 7, 1, 14, 78, 220, 330, 252, 84, 8, 1, 16, 105, 364, 715, 792, 462, 120, 9, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 10
Offset: 1
Array begins:
1, 2, 3, 4, 5, 6, ...
1, 4, 10, 20, 35, ...
1, 6, 21, 56, ...
1, 8, 36, ...
1, 10, ...
1, ...
...
Example:
Starting with 1, every entry is twice the one to the left minus the second one to the left, plus the one above.
For n = 9 the a(9) = 10 solution is 2*4 - 1 + 3.
From _Philippe Deléham_, Feb 24 2012: (Start)
Triangle T(n,k) begins:
1;
1, 2;
1, 4, 3;
1, 6, 10, 4;
1, 8, 21, 20, 5;
1, 10, 36, 56, 35, 6;
1, 12, 55, 120, 126, 56, 7; (End)
From _Philippe Deléham_, Mar 22 2012: (Start)
(1, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 4, 3, 0;
1, 6, 10, 4, 0;
1, 8, 21, 20, 5, 0;
1, 10, 36, 56, 35, 6, 0;
1, 12, 55, 120, 126, 56, 7, 0; (End)
-
F:=Factorial;; Flat(List([1..15], n-> List([1..n], k-> Sum([0..Int((k-1)/2)], j-> (-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)) )))); # G. C. Greubel, Dec 15 2019
-
F:=Factorial; [ &+[(-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)): j in [0..Floor((k-1)/2)]]: k in [1..n], n in [1..15]]; // G. C. Greubel, Dec 15 2019
-
T := (n, k) -> simplify(GegenbauerC(k, n-k, 1)):
for n from 0 to 10 do seq(T(n,k), k=0..n-1) od; # Peter Luschny, May 10 2016
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A054142 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A172431 *)
(* Clark Kimberling, Mar 09 2012 *)
Table[GegenbauerC[k-1, n-k+1, 1], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 15 2019 *)
-
T(n,k) = sum(j=0, (k-1)\2, (-1)^j*(n-j-1)!*2^(k-2*j-1)/(j!*(n-k)!*(k-2*j-1)!) );
for(n=1, 10, for(k=1, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 15 2019
-
[[gegenbauer(k-1, n-k+1, 1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 15 2019
A157000
Triangle T(n,k) = (n/k)*binomial(n-k-1, k-1) read by rows.
Original entry on oeis.org
2, 3, 4, 2, 5, 5, 6, 9, 2, 7, 14, 7, 8, 20, 16, 2, 9, 27, 30, 9, 10, 35, 50, 25, 2, 11, 44, 77, 55, 11, 12, 54, 112, 105, 36, 2, 13, 65, 156, 182, 91, 13, 14, 77, 210, 294, 196, 49, 2, 15, 90, 275, 450, 378, 140, 15, 16, 104, 352, 660, 672, 336, 64, 2, 17, 119, 442, 935, 1122, 714, 204, 17
Offset: 2
The table starts in row n=2, column k=1 as:
2;
3;
4, 2;
5, 5;
6, 9, 2;
7, 14, 7;
8, 20, 16, 2;
9, 27, 30, 9;
10, 35, 50, 25, 2;
11, 44, 77, 55, 11;
12, 54, 112, 105, 36, 2;
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 199
-
[[n*Binomial(n-k-1,k-1)/k: k in [1..Floor(n/2)]]: n in [2..20]]; // G. C. Greubel, Apr 25 2019
-
Table[(n/k)*Binomial[n-k-1, k-1], {n,2,20}, {k,1,Floor[n/2]}]//Flatten (* modified by G. C. Greubel, Apr 25 2019 *)
-
a(n,k)=n*binomial(n-k-1,k-1)/k; \\ Charles R Greathouse IV, Jul 10 2011
-
[[n*binomial(n-k-1,k-1)/k for k in (1..floor(n/2))] for n in (2..20)] # G. C. Greubel, Apr 25 2019
Offset 2, keyword:tabf, more terms by the Assoc. Eds. of the OEIS, Nov 01 2010
A127675
Coefficient table for Chebyshev's U(2*n,x) polynomials in decreasing powers of (1-x^2).
Original entry on oeis.org
1, -4, 3, 16, -20, 5, -64, 112, -56, 7, 256, -576, 432, -120, 9, -1024, 2816, -2816, 1232, -220, 11, 4096, -13312, 16640, -9984, 2912, -364, 13, -16384, 61440, -92160, 70400, -28800, 6048, -560, 15, 65536, -278528, 487424, -452608, 239360, -71808, 11424, -816, 17, -262144, 1245184
Offset: 0
[1];[ -4,3];[16,-20,5];[ -64,112,-56,7];[256,-576,432,-120,9]; ...
Row n=3: -64*(1-x^2)^3+ 112*(1-x^2)^2 -56*(1-x^2)^1 + 7 = 64*x^6 - 80*x^4 + 24* x^2 -1 =U(6,x).
Row n=3: sin(7*phi)=-64*sin(phi)^7 + 112*sin(phi)^5 - 56*sin(phi)^3 + 7*sin(phi).
Cf.
A082985 (scaled coefficient table).
A207543
Triangle read by rows, expansion of (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
Original entry on oeis.org
1, 0, 3, 0, 1, 5, 0, 0, 5, 7, 0, 0, 1, 14, 9, 0, 0, 0, 7, 30, 11, 0, 0, 0, 1, 27, 55, 13, 0, 0, 0, 0, 9, 77, 91, 15, 0, 0, 0, 0, 1, 44, 182, 140, 17, 0, 0, 0, 0, 0, 11, 156, 378, 204, 19, 0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21, 0
Offset: 0
Triangle begins :
1
0, 3
0, 1, 5
0, 0, 5, 7
0, 0, 1, 14, 9
0, 0, 0, 7, 30, 11
0, 0, 0, 1, 27, 55, 13
0, 0, 0, 0, 9, 77, 91, 15
0, 0, 0, 0, 1, 44, 182, 140, 17
0, 0, 0, 0, 0, 11, 156, 378, 204, 19
0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21
0, 0, 0, 0, 0, 0, 13, 275, 1122, 1254, 385, 23
Cf.
A082985 which is another version of this triangle.
-
s := (1+y*x)/(1-2*y*x+y*(y-1)*x^2): t := series(s,x,12):
seq(print(seq(coeff(coeff(t,x,n),y,m),m=0..n)),n=0..11); # Peter Luschny, Aug 17 2016
New name using a formula of the author from
Peter Luschny, Aug 17 2016
A356777
G.f.: Sum_{n=-oo..+oo} x^(n^2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is a g.f. of the Catalan numbers (A000108).
Original entry on oeis.org
1, 1, -3, 0, 1, -5, 5, 0, 0, 1, -7, 14, -7, 0, 0, 0, 1, -9, 27, -30, 9, 0, 0, 0, 0, 1, -11, 44, -77, 55, -11, 0, 0, 0, 0, 0, 1, -13, 65, -156, 182, -91, 13, 0, 0, 0, 0, 0, 0, 1, -15, 90, -275, 450, -378, 140, -15, 0, 0, 0, 0, 0, 0, 0, 1, -17, 119, -442, 935, -1122, 714, -204, 17, 0, 0, 0, 0, 0, 0, 0, 0, 1, -19, 152, -665, 1729, -2717, 2508, -1254, 285, -19
Offset: 0
G.f.: A(x) = 1 + x - 3*x^2 + x^4 - 5*x^5 + 5*x^6 + x^9 - 7*x^10 + 14*x^11 - 7*x^12 + x^16 - 9*x^17 + 27*x^18 - 30*x^19 + 9*x^20 + x^25 - 11*x^26 + 44*x^27 - 77*x^28 + 55*x^29 - 11*x^30 + x^36 - 13*x^37 + 65*x^38 - 156*x^39 + 182*x^40 - 91*x^41 + 13*x^42 + x^49 - 15*x^50 + 90*x^51 - 275*x^52 + 450*x^53 - 378*x^54 + 140*x^55 - 15*x^56 + ...
such that
A(x) = ... + x^16/C(x)^9 + x^9/C(x)^7 + x^4/C(x)^5 + x/C(x)^3 + 1/C(x) + x*C(x) + x^4*C(x)^3 + x^9*C(x)^5 + x^16*C(x)^7 + x^25*C(x)^9 + ... + x^(n^2)*C^(2*n-1) + ...
where the Catalan function C(x) = (1 - sqrt(1-4*x))/(2*x) begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ...
RELATED TABLE.
This sequence may be written in the form of an irregular triangle:
1,
1, -3, 0,
1, -5, 5, 0, 0,
1, -7, 14, -7, 0, 0, 0,
1, -9, 27, -30, 9, 0, 0, 0, 0,
1, -11, 44, -77, 55, -11, 0, 0, 0, 0, 0,
1, -13, 65, -156, 182, -91, 13, 0, 0, 0, 0, 0, 0,
1, -15, 90, -275, 450, -378, 140, -15, 0, 0, 0, 0, 0, 0, 0,
1, -17, 119, -442, 935, -1122, 714, -204, 17, 0, 0, 0, 0, 0, 0, 0, 0,
1, -19, 152, -665, 1729, -2717, 2508, -1254, 285, -19, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
Compare the above construction to triangle A082985.
-
/* By Definition: */
{a(n) = my(A, C = 1/x*serreverse(x-x^2 +O(x^(n+2))), M=ceil(sqrt(n+1)));
A = sum(m=-M, M, x^(m^2) * C^(2*m-1) ); polcoeff(A, n)}
for(n=0, 90, print1(a(n), ", "))
-
/* Without Using Catalan Series */
{a(n) = my(A, M=ceil(sqrt(n+1)));
A = sum(m=0, M, sum(k=0, 2*m, (-1)^k*binomial(2*m-k, k)*(2*m+1)/(2*m-2*k+1) * x^(m^2 + k) ) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 90, print1(a(n), ", "))
Comments