cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A082985 Coefficient table for Chebyshev's U(2*n,x) polynomial expanded in decreasing powers of (-4*(1-x^2)).

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 27, 30, 9, 1, 11, 44, 77, 55, 11, 1, 13, 65, 156, 182, 91, 13, 1, 15, 90, 275, 450, 378, 140, 15, 1, 17, 119, 442, 935, 1122, 714, 204, 17, 1, 19, 152, 665, 1729, 2717, 2508, 1254, 285, 19
Offset: 0

Views

Author

Gary W. Adamson, May 29 2003

Keywords

Comments

Sum of row #n = A000204(2n+1), i.e., A002878(n).
Row #n has the unsigned coefficients of a polynomial whose roots are 2 sin(2*Pi*k/(2n+1)) [for k=1 to 2n].
The positive roots are the diagonal lengths of a regular (2n+1)-gon, inscribed in the unit circle.
Polynomial of row #n = Sum_{m=0..n} (-1)^m T(n,m) x^(2n-2m).
This is also the unsigned coefficient table of Chebyshev's 2*T(2*n+1,x) polynomials expanded in decreasing odd powers of 2*x. - Wolfdieter Lang, Mar 07 2007
The n-th row are the coefficients of the polynomial S(n) where S(0)=1, S(1)=x+3, and S(n) = (x+2)*S(n-1) - S(n-2) (see Sun link). - Michel Marcus, Mar 07 2016

Examples

			Expansion of polynomials:
  x^0;
  x^2  -  3*x^0;
  x^4  -  5*x^2 +  5*x^0;
  x^6  -  7*x^4 + 14*x^2 -  7*x^0;
  x^8  -  9*x^6 + 27*x^4 - 30*x^2 +  9*x^0;
  x^10 - 11*x^8 + 44*x^6 - 77*x^4 + 55*x^2 - 11*x^0; ...
Polynomial #4 has 8 roots: 2*sin(2*Pi*k/9) for k=1 to 8.
Coefficients (with signs removed) are
  1;
  1,  3;
  1,  5,  5;
  1,  7, 14,  7;
  1,  9, 27, 30,  9;
  1, 11, 44, 77, 55, 11;
  ...
		

References

  • J. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, 1992; see pp. 151,175.
  • Stephen Eberhart, "Mathematical-Physical Correspondence," Number 37-38, Jan 08, 1982.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Cf. companion triangle A084534.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) ))); # G. C. Greubel, Dec 30 2019
  • Magma
    [Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    A082985 := proc(n,m)
        binomial(2*n-m,m)*(2*n+1)/(2*n-2*m+1) ;
    end proc: # R. J. Mathar, Sep 08 2013
  • Mathematica
    T[n_, m_]:= Binomial[2*n-m, m]*(2*n+1)/(2*n-2*m+1); Table[T[n, m], {n, 0, 9}, {m, 0, n}]//Flatten (* Jean-François Alcover, Oct 08 2013, after R. J. Mathar *)
  • PARI
    T(n,k)=binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1); \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [[binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 30 2019
    

Formula

Triangle read by rows: row #n has n+1 terms. T(n,0)=1, T(n,n)=2n+1, T(n,m) = T(n-1,m-1) + Sum_{k=0..m} T(n-1-k, m-k).
T(k, s) = ((2k+1)/(2s+1))*binomial(k+s, 2s), 0 <= s <= k; then transpose the triangle. - Gary W. Adamson, May 29 2003
From Wolfdieter Lang, Mar 07 2007: (Start)
Signed version: a(n,m)=0 if n < m, otherwise a(n,m) = ((-1)^m)*binomial(2*n+1-m,m)*(2*n+1)/(2*n+1-m). From the Rivlin reference, p. 37, eq.(1.92), using the differential eq. for T(2*n+1,x). Also from Waring's formula.
Signed version: a(n,m)=0 if n < m, otherwise a(n,m) = ((-1)^m)*(Sum_{k=0..n-m} binomial(m+k,k)*binomial(2*n+1,2*(k+m)))/2^(2*(n-m)). Proof: De Moivre's formula for cos((2*n+1)*phi) rewritten in terms of odd powers of cos(phi). Cf. Rivlin reference p. 4, eq.(1.10).
Signed version: a(n,m) = A084930(n,n-m)/2^(2*(n-m)) (scaled coefficients of Chebyshev's T(2*n+1,x), decreasing odd powers).
Unsigned version: a(n,m)=0 if n < m, otherwise a(n,m) = binomial(2*n-m,m)*(2*n+1)/(2*(n-m)+1). From the differential eq. for U(2*n,x). (End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012
Sum_{i>=0} T(n-i,n-2*i) = A003945(n). - Philippe Deléham, Feb 24 2012
Sum_{i>=0} T(n-i, n-2*i)*4^i = 3^n = A000244(n). - Philippe Deléham, Feb 24 2012
From Paul Weisenhorn Nov 25 2019: (Start)
T(r,k) = binomial(2*r-k,k-1) + binomial(2*r-1-k,k-2) with 1 <= r and 1 <= k <= r.
For a given n, one gets r = floor((1+sqrt(8*n))/2), k = n-(r^2-r)/2, a(n) = binomial(2*r-k,k-1) + binomial(2*r-1-k,k-2). (End)

Extensions

Edited by Anne Donovan (anned3005(AT)aol.com), Jun 11 2003
Re-edited by Don Reble, Nov 12 2005

A185828 Half the number of n X 2 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

1, 3, 10, 23, 61, 162, 421, 1103, 2890, 7563, 19801, 51842, 135721, 355323, 930250, 2435423, 6376021, 16692642, 43701901, 114413063, 299537290, 784198803, 2053059121, 5374978562, 14071876561, 36840651123, 96450076810, 252509579303
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2011

Keywords

Comments

Column 2 of A185835.

Examples

			Some solutions for 4 X 2 with a(1,1)=0:
  0 0   0 1   0 0   0 0   0 1   0 0   0 0   0 0   0 0   0 0
  1 1   0 1   0 1   1 1   0 1   1 0   0 1   1 1   1 0   0 1
  0 1   0 0   0 1   0 1   1 0   1 0   1 1   1 1   1 1   0 1
  0 0   1 1   0 0   0 1   1 0   0 0   0 0   0 0   0 0   0 1
The logarithmic g.f. begins:
L(x) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 162*x^6/6 + ..., where
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 63*x^6 + ... + A051286(n)*x^n/n + ... - _Paul D. Hanna_, Mar 19 2011
		

Crossrefs

Cf. A051286 (exp), A180662 (Fi1).

Programs

  • Maple
    a := proc(n): n*add(binomial(2*n-2*k, 2*k)/(n-k), k=0..n-1) end: seq(a(n), n=1..28); # Johannes W. Meijer, Jun 18 2018
  • PARI
    {a(n)=n*sum(k=0, n-1, binomial(2*n-2*k, 2*k)/(n-k))} /* Paul D. Hanna, Mar 19 2011 */
    
  • PARI
    {a(n)=n*polcoeff(-log( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n))/2, n)} /* Paul D. Hanna, Mar 19 2011 */

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
a(n) = n*Sum_{k=0..n-1} C(2n-2k, 2k)/(n-k). - Paul D. Hanna, Mar 19 2011
L.g.f.: Sum_{n>=1} a(n)*x^n/n = -log((1+x+x^2)*(1-3*x+x^2))/2. - Paul D. Hanna, Mar 19 2011
Logarithmic derivative of A051286, which is the Whitney number of level n of the lattice of the ideals of the fence of order 2n. - Paul D. Hanna, Mar 19 2011
Empirical g.f.: x*(1+x+3*x^2-2*x^3)/(1+x+x^2)/(1-3*x+x^2). - Colin Barker, Feb 22 2012
Empirical: a(n) = Sum_{k=0..floor(n/2)} A084534(n, 2*k). - Johannes W. Meijer, Jun 17 2018
Empirical: a(n) = A100886(2n). - Wojciech Florek, Jan 26 2020

A049853 a(n) = a(n-1) + Sum_{k=0..n-3} a(k) for n >= 2, a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 2, 3, 6, 11, 19, 33, 58, 102, 179, 314, 551, 967, 1697, 2978, 5226, 9171, 16094, 28243, 49563, 86977, 152634, 267854, 470051, 824882, 1447567, 2540303, 4457921, 7823106, 13728594, 24092003, 42278518, 74193627
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A070550, A180662 (Ca2).

Programs

  • Haskell
    a049853 n = a049853_list !! n
    a049853_list = 1 : 2 : 2 : 3 :
       zipWith (+) a049853_list
                   (zipWith (+) (drop 2 a049853_list) (drop 3 a049853_list))
    -- Reinhard Zumkeller, Aug 06 2011
    
  • Maple
    a := proc(n) option remember: if n<2 then n+1 else a(n-1) + add(a(k), k=0..n-3) fi end: seq(a(n), n=0..33); # Johannes W. Meijer, Jun 18 2018
  • Mathematica
    LinearRecurrence[{2,-1,1},{1,2,2},40] (* Harvey P. Dale, May 12 2022 *)
  • PARI
    Vec((1 - x)*(1 + x) / (1 - 2*x + x^2 - x^3) + O(x^40)) \\ Colin Barker, Jun 17 2018

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3); 3 initial terms required.
a(n) = a(n-1) + a(n-2) + a(n-4) for n > 3. - Reinhard Zumkeller, Aug 06 2011
Empirical: a(n) = Sum_{k=0..floor(n/3)} A084534(n-2*k, n-3*k). - Johannes W. Meijer, Jun 17 2018
G.f.: (1 - x)*(1 + x) / (1 - 2*x + x^2 - x^3). - Colin Barker, Jun 17 2018

A158982 Coefficients of polynomials P(n,x):=-2+P(n-1,x)^2, where P(0,x)=x-2.

Original entry on oeis.org

1, -2, 1, -4, 2, 1, -8, 20, -16, 2, 1, -16, 104, -352, 660, -672, 336, -64, 2, 1, -32, 464, -4032, 23400, -95680, 283360, -615296, 980628, -1136960, 940576, -537472, 201552, -45696, 5440, -256, 2, 1, -64, 1952, -37760, 520144, -5430656, 44662464
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2009

Keywords

Comments

The 2^n zeros of P(n,x) are 2+2*cos[(2k-1)Pi/(2^(n+1))], k=1,2,...,2^n.
P(n,x) = 2*T(2^(n+1),(1/2)x^(1/2)), where T(k,t) is the k-th Chebyshev polynomial of the first kind.

Examples

			Row 1: 1 -2 (from x-2)
Row 2: 1 -4 2 (from x^2-4x+2)
Row 3: 1 -8 20 -16 2
Row 4: 1 -16 104 -352 660 -672 336 -64 2
		

Crossrefs

Programs

  • PARI
    tabf(nn) = {p = x-2; print(Vec(p)); for (n=2, nn, p = -2 + p^2; print(Vec(p)););} \\ Michel Marcus, Mar 01 2016

Formula

P(n+1,x+2) = P(n,x^2) for n>=0.

A118007 Triangle, diagonals generated from Lucas polynomials.

Original entry on oeis.org

2, 3, 2, 7, 4, 2, 18, 14, 5, 2, 47, 52, 23, 6, 2, 123, 194, 110, 34, 7, 2, 322, 724, 527, 198, 47, 8, 2, 843, 2702, 2525, 1154, 322, 62, 9, 2, 2207, 10084, 12098, 6726, 2207, 488, 79, 10, 2, 5778, 37634, 57965, 39202, 15127, 3842, 702, 98, 11, 2
Offset: 0

Views

Author

Gary W. Adamson, Apr 09 2006

Keywords

Comments

Leftmost column = A005248, bisection of Lucas sequence A000032.
Refer to A084534 for a variation of the Lucas polynomials.

Examples

			First few rows of the triangle:
    2;
    3,   2;
    7,   4,   2;
   18,  14,   5,  2;
   47,  52,  23,  6, 2;
  123, 194, 110, 34, 7, 2;
  ...
For example, 4th diagonal from the right (18, 52, 110, ...) = f(x), x=1,2,3, ...: x^3 + 6x^2 + 9x + 2.
(18, 52, 110, ...) = binomial transform of 4th row of A118008: (18, 34, 24, 6).
		

References

  • Jay Kappraff, "Beyond Measure, A Guided tour Through Nature, Myth and Number", World Scientific, 2002, p. 485 (Table 22.6b).

Crossrefs

Programs

  • PARI
    TLucas(n,k) = binomial(n-k, k) + binomial(n-k-1, k-1) + (n==0); \\ A084534
    pol(n) = Pol(vector(n+1, k, TLucas(2*n,k-1)));
    T(n,k) = subst(pol(n-k), x, k+1);
    trgT(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Aug 12 2022

Formula

Diagonals are sequences as f(x), x=1,2,3; Lucas polynomials in the format: (2); (x + 2); (x^2 + 4x + 2); (x^3 + 6x^2 + 9x + 2); (x^4 + 8x^3 + 20x^2 + 16x + 2); (x^5 + 10x^4 + 35x^3 + 50x^2 + 25x + 2); ...
Diagonals of the triangle are binomial transforms of A118008 rows.

Extensions

More terms from Michel Marcus, Aug 12 2022

A302676 Number of n X 4 0..1 arrays with every element equal to 0, 1, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 5, 12, 20, 33, 64, 121, 231, 440, 838, 1597, 3042, 5796, 11042, 21037, 40079, 76357, 145473, 277150, 528017, 1005960, 1916521, 3651291, 6956316, 13252938, 25249049, 48103634, 91645416, 174599746, 332641529, 633737387, 1207375029, 2300250057, 4382358586
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2018

Keywords

Comments

Column 4 of A302680.
Empirical: The antidiagonal sums of A084534 lead to the terms of this sequence for n >= 5. - Johannes W. Meijer, Jun 17 2018

Examples

			Some solutions for n=5:
  0 1 0 1     0 1 0 1     0 0 0 1     0 1 0 1     0 1 1 1
  0 1 0 1     0 0 0 1     0 1 0 1     0 1 0 1     0 1 0 1
  0 1 0 1     0 1 0 1     0 1 0 1     0 0 0 1     0 1 0 1
  0 1 0 1     0 1 1 1     0 1 1 1     0 1 0 1     0 1 0 1
  0 1 0 1     0 1 0 1     0 1 0 1     0 1 1 1     0 0 0 1
		

Crossrefs

Cf. A302680, A180662 (Kn11), A084534.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-2) - a(n-4) for n > 8.
Empirical g.f.: x*(5 - 3*x^2 - 2*x^3 - 6*x^4 - 4*x^5 + 3*x^6 + 2*x^7) / (1 - x - 2*x^2 + x^4). - Colin Barker, Jun 17 2018
The data in the range n = 6..210 is matched by h(n) = hypergeom([-n+1, -(1/2)*n, 1/4-(1/2)*n, -(1/2)*n+1/2, -(1/2)*n+3/4], [-n, -(2/3)*n+1, -(2/3)*n+2/3, -(2/3)*n+1/3], -256/27). - Peter Luschny, Aug 24 2018

A305402 A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)).

Original entry on oeis.org

1, 1, -2, 3, -4, 2, 15, -18, 9, -2, 105, -120, 60, -16, 2, 945, -1050, 525, -150, 25, -2, 10395, -11340, 5670, -1680, 315, -36, 2, 135135, -145530, 72765, -22050, 4410, -588, 49, -2, 2027025, -2162160, 1081080, -332640, 69300, -10080, 1008, -64, 2
Offset: 0

Views

Author

Johannes W. Meijer, May 31 2018

Keywords

Comments

The function f(u, p) = (1/2)*(1+1/(sqrt(1-u^2))) * exp(p*sqrt(1-u^2)) was found while studying the Fresnel-Kirchhoff and the Rayleigh-Sommerfeld theories of diffraction, see the Meijer link.
The Taylor expansion of f(u, p) leads to the number triangle T(n, k), see the example section.
Normalization of the triangle terms, dividing the T(n, k) by T(n-k, 0), leads to A084534.
The row sums equal A003436, n >= 2, respectively A231622, n >= 1.

Examples

			The first few terms of the Taylor expansion of f(u; p) are:
f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... )
The first few rows of the T(n, k) triangle are:
n=0:     1
n=1:     1,     -2
n=2:     3,     -4,    2
n=3:    15,    -18,    9,    -2
n=4:   105,   -120,   60,   -16,   2
n=5:   945,  -1050,  525,  -150,  25,  -2
n=6: 10395, -11340, 5670, -1680, 315, -36, 2
		

References

  • J. W. Goodman, Introduction to Fourier Optics, 1996.
  • A. Papoulis, Systems and Transforms with Applications in Optics, 1968.

Crossrefs

Cf. Related to the left hand columns: A001147, A001193, A261065.
Cf. Related to the right hand columns: A280560, A162395, A006011, A040977, A053347, A054334, A266561.

Programs

  • Magma
    [[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
  • Maple
    T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8);
  • Mathematica
    Table[If[n==0 && k==0,1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    T(n,k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018
    

Formula

T(n, k) = (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!), n > 0 and 0 <= k <= n, T(0, 0) = 1.
T(n, k) = (-1)^k*A001147(n-k)*A084534(n, k), n >= 0 and 0 <= k <= n.
T(n, k) = 2^(2*(k-n)+1)*A001147(n-k)*A127674(n, n-k), n > 0 and 0 <= k <= n, T(0, 0) = 1.
T(n, k) = (-1)^k*(A001497(n, k) + A132062(n, k)), n >= 1, T(0,0) = 1.
Showing 1-7 of 7 results.