A082985
Coefficient table for Chebyshev's U(2*n,x) polynomial expanded in decreasing powers of (-4*(1-x^2)).
Original entry on oeis.org
1, 1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 27, 30, 9, 1, 11, 44, 77, 55, 11, 1, 13, 65, 156, 182, 91, 13, 1, 15, 90, 275, 450, 378, 140, 15, 1, 17, 119, 442, 935, 1122, 714, 204, 17, 1, 19, 152, 665, 1729, 2717, 2508, 1254, 285, 19
Offset: 0
Expansion of polynomials:
x^0;
x^2 - 3*x^0;
x^4 - 5*x^2 + 5*x^0;
x^6 - 7*x^4 + 14*x^2 - 7*x^0;
x^8 - 9*x^6 + 27*x^4 - 30*x^2 + 9*x^0;
x^10 - 11*x^8 + 44*x^6 - 77*x^4 + 55*x^2 - 11*x^0; ...
Polynomial #4 has 8 roots: 2*sin(2*Pi*k/9) for k=1 to 8.
Coefficients (with signs removed) are
1;
1, 3;
1, 5, 5;
1, 7, 14, 7;
1, 9, 27, 30, 9;
1, 11, 44, 77, 55, 11;
...
- J. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, 1992; see pp. 151,175.
- Stephen Eberhart, "Mathematical-Physical Correspondence," Number 37-38, Jan 08, 1982.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- Vincenzo Librandi, Rows n = 0..100 of triangle, flattened
- K. Dilcher and K. B. Stolarsky, A Pascal-type triangle characterizing twin primes, Amer. Math. Monthly, 112 (2005), 673-681.
- Zhi-Hong Sun, Expansions and identities concerning Lucas sequences, Fibonacci Quart. 44 (2006), no. 2, 145-153. See Theorem 3.1
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) ))); # G. C. Greubel, Dec 30 2019
-
[Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 30 2019
-
A082985 := proc(n,m)
binomial(2*n-m,m)*(2*n+1)/(2*n-2*m+1) ;
end proc: # R. J. Mathar, Sep 08 2013
-
T[n_, m_]:= Binomial[2*n-m, m]*(2*n+1)/(2*n-2*m+1); Table[T[n, m], {n, 0, 9}, {m, 0, n}]//Flatten (* Jean-François Alcover, Oct 08 2013, after R. J. Mathar *)
-
T(n,k)=binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1); \\ G. C. Greubel, Dec 30 2019
-
[[binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 30 2019
Edited by Anne Donovan (anned3005(AT)aol.com), Jun 11 2003
A185828
Half the number of n X 2 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.
Original entry on oeis.org
1, 3, 10, 23, 61, 162, 421, 1103, 2890, 7563, 19801, 51842, 135721, 355323, 930250, 2435423, 6376021, 16692642, 43701901, 114413063, 299537290, 784198803, 2053059121, 5374978562, 14071876561, 36840651123, 96450076810, 252509579303
Offset: 1
Some solutions for 4 X 2 with a(1,1)=0:
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1
0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1
0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
The logarithmic g.f. begins:
L(x) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 162*x^6/6 + ..., where
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 63*x^6 + ... + A051286(n)*x^n/n + ... - _Paul D. Hanna_, Mar 19 2011
-
a := proc(n): n*add(binomial(2*n-2*k, 2*k)/(n-k), k=0..n-1) end: seq(a(n), n=1..28); # Johannes W. Meijer, Jun 18 2018
-
{a(n)=n*sum(k=0, n-1, binomial(2*n-2*k, 2*k)/(n-k))} /* Paul D. Hanna, Mar 19 2011 */
-
{a(n)=n*polcoeff(-log( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n))/2, n)} /* Paul D. Hanna, Mar 19 2011 */
A049853
a(n) = a(n-1) + Sum_{k=0..n-3} a(k) for n >= 2, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 2, 3, 6, 11, 19, 33, 58, 102, 179, 314, 551, 967, 1697, 2978, 5226, 9171, 16094, 28243, 49563, 86977, 152634, 267854, 470051, 824882, 1447567, 2540303, 4457921, 7823106, 13728594, 24092003, 42278518, 74193627
Offset: 0
-
a049853 n = a049853_list !! n
a049853_list = 1 : 2 : 2 : 3 :
zipWith (+) a049853_list
(zipWith (+) (drop 2 a049853_list) (drop 3 a049853_list))
-- Reinhard Zumkeller, Aug 06 2011
-
a := proc(n) option remember: if n<2 then n+1 else a(n-1) + add(a(k), k=0..n-3) fi end: seq(a(n), n=0..33); # Johannes W. Meijer, Jun 18 2018
-
LinearRecurrence[{2,-1,1},{1,2,2},40] (* Harvey P. Dale, May 12 2022 *)
-
Vec((1 - x)*(1 + x) / (1 - 2*x + x^2 - x^3) + O(x^40)) \\ Colin Barker, Jun 17 2018
A158982
Coefficients of polynomials P(n,x):=-2+P(n-1,x)^2, where P(0,x)=x-2.
Original entry on oeis.org
1, -2, 1, -4, 2, 1, -8, 20, -16, 2, 1, -16, 104, -352, 660, -672, 336, -64, 2, 1, -32, 464, -4032, 23400, -95680, 283360, -615296, 980628, -1136960, 940576, -537472, 201552, -45696, 5440, -256, 2, 1, -64, 1952, -37760, 520144, -5430656, 44662464
Offset: 1
Row 1: 1 -2 (from x-2)
Row 2: 1 -4 2 (from x^2-4x+2)
Row 3: 1 -8 20 -16 2
Row 4: 1 -16 104 -352 660 -672 336 -64 2
-
tabf(nn) = {p = x-2; print(Vec(p)); for (n=2, nn, p = -2 + p^2; print(Vec(p)););} \\ Michel Marcus, Mar 01 2016
A118007
Triangle, diagonals generated from Lucas polynomials.
Original entry on oeis.org
2, 3, 2, 7, 4, 2, 18, 14, 5, 2, 47, 52, 23, 6, 2, 123, 194, 110, 34, 7, 2, 322, 724, 527, 198, 47, 8, 2, 843, 2702, 2525, 1154, 322, 62, 9, 2, 2207, 10084, 12098, 6726, 2207, 488, 79, 10, 2, 5778, 37634, 57965, 39202, 15127, 3842, 702, 98, 11, 2
Offset: 0
First few rows of the triangle:
2;
3, 2;
7, 4, 2;
18, 14, 5, 2;
47, 52, 23, 6, 2;
123, 194, 110, 34, 7, 2;
...
For example, 4th diagonal from the right (18, 52, 110, ...) = f(x), x=1,2,3, ...: x^3 + 6x^2 + 9x + 2.
(18, 52, 110, ...) = binomial transform of 4th row of A118008: (18, 34, 24, 6).
- Jay Kappraff, "Beyond Measure, A Guided tour Through Nature, Myth and Number", World Scientific, 2002, p. 485 (Table 22.6b).
-
TLucas(n,k) = binomial(n-k, k) + binomial(n-k-1, k-1) + (n==0); \\ A084534
pol(n) = Pol(vector(n+1, k, TLucas(2*n,k-1)));
T(n,k) = subst(pol(n-k), x, k+1);
trgT(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Aug 12 2022
A302676
Number of n X 4 0..1 arrays with every element equal to 0, 1, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
Original entry on oeis.org
5, 5, 12, 20, 33, 64, 121, 231, 440, 838, 1597, 3042, 5796, 11042, 21037, 40079, 76357, 145473, 277150, 528017, 1005960, 1916521, 3651291, 6956316, 13252938, 25249049, 48103634, 91645416, 174599746, 332641529, 633737387, 1207375029, 2300250057, 4382358586
Offset: 1
Some solutions for n=5:
0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1
0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1
0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1
A305402
A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)).
Original entry on oeis.org
1, 1, -2, 3, -4, 2, 15, -18, 9, -2, 105, -120, 60, -16, 2, 945, -1050, 525, -150, 25, -2, 10395, -11340, 5670, -1680, 315, -36, 2, 135135, -145530, 72765, -22050, 4410, -588, 49, -2, 2027025, -2162160, 1081080, -332640, 69300, -10080, 1008, -64, 2
Offset: 0
The first few terms of the Taylor expansion of f(u; p) are:
f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... )
The first few rows of the T(n, k) triangle are:
n=0: 1
n=1: 1, -2
n=2: 3, -4, 2
n=3: 15, -18, 9, -2
n=4: 105, -120, 60, -16, 2
n=5: 945, -1050, 525, -150, 25, -2
n=6: 10395, -11340, 5670, -1680, 315, -36, 2
- J. W. Goodman, Introduction to Fourier Optics, 1996.
- A. Papoulis, Systems and Transforms with Applications in Optics, 1968.
- Andrew Howroyd, Rows n=0..50 of triangle, flattened
- M. J. Bastiaans, The Wigner distribution function applied to optical signals and systems, Optics Communications, Vol. 25, nr. 1, pp. 26-30, 1978.
- H. J. Butterweck, General theory of linear, coherent optical data processing systems, Journal of the Optical Society of America, Vol. 67, nr. 1, pp. 60-70, 1977.
- J. W. Meijer, A note on optical diffraction, 1979.
-
[[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
-
T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8);
-
Table[If[n==0 && k==0,1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 08 2018 *)
-
T(n,k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018
Showing 1-7 of 7 results.
Comments