A005251 a(0) = 0, a(1) = a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).
0, 1, 1, 1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, 616, 1081, 1897, 3329, 5842, 10252, 17991, 31572, 55405, 97229, 170625, 299426, 525456, 922111, 1618192, 2839729, 4983377, 8745217, 15346786, 26931732, 47261895, 82938844, 145547525, 255418101, 448227521
Offset: 0
Examples
From _Joerg Arndt_, Jan 26 2013: (Start) The a(5+2) = 12 compositions of 5 where no two adjacent parts are != 1 are [ 1] [ 1 1 1 1 1 ] [ 2] [ 1 1 1 2 ] [ 3] [ 1 1 2 1 ] [ 4] [ 1 1 3 ] [ 5] [ 1 2 1 1 ] [ 6] [ 1 3 1 ] [ 7] [ 1 4 ] [ 8] [ 2 1 1 1 ] [ 9] [ 2 1 2 ] [10] [ 3 1 1 ] [11] [ 4 1 ] [12] [ 5 ] (End) G.f. = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 12*x^7 + 21*x^8 + 37*x^9 + ...
References
- S. Burckel, Efficient methods for three strand braids (submitted). [Apparently unpublished]
- P. Chinn and S. Heubach, "Compositions of n with no occurrence of k", Congressus Numeratium, 2002, v. 162, pp. 33-51.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 205.
- R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, Cyclic permutations avoiding patterns in both one-line and cycle forms, arXiv:2312.05145 [math.CO], 2023. See p. 2.
- Andrei Asinowski and Cyril Banderier, On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020) Leibniz International Proceedings in Informatics (LIPIcs) Vol. 159, 1:1-1:16.
- R. Austin and R. K. Guy, Binary sequences without isolated ones, Fib. Quart., 16 (1978), 84-86.
- J.-L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016). See Table 4.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- N. Bergeron, S. Mykytiuk, F. Sottile and S. van Willigenburg, Shifted quasisymmetric functions and the Hopf algebra of peak functions, arXiv:math/9904105 [math.CO], 1999.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 11.
- A. Blecher, C. Brennan, A. Knopfmacher and H. Prodinger, The height and width of bargraphs, Discrete Applied Math. 180, (2015), 36-44.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 112.
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Properties of a Ternary Infinite Word, arXiv:2206.01776 [cs.DM], 2022.
- James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Complement Avoidance in Binary Words, arXiv:2209.09598 [math.CO], 2022.
- J. Demetrovics et al., On the number of unions in a family of sets, in Combinatorial Math., Proc. 3rd Internat. Conf., Annals NY Acad. Sci., 555 (1989), 150-158.
- R. Doroslovacki, Binary sequences without 011...110 (k-1 1's) for fixed k, Mat. Vesnik 46 (1994), no. 3-4, 93-98.
- Nazim Fatès, Biswanath Sethi, and Sukanta Das, On the Reversibility of ECAs with Fully Asynchronous Updating: The Recurrence Point of View, in Reversibility and Universality, Andrew Adamatzky, editor, Emergence, Complexity and Computation Vol. 30. Springer, 2018.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- R. L. Graham and N. J. A. Sloane, Anti-Hadamard matrices, Linear Alg. Applic., 62 (1984), 113-137.
- R. K. Guy, Letter to N. J. A. Sloane, Feb 1986
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,2).
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 98
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart. 44 (2006), no. 4, 335-340.
- Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras II. Satisfaction of bracketing identities, spectrum dichotomy, arXiv:2011.08522 [math.CO], 2020.
- J. J. Madden, A generating function for the distribution of runs in binary words, arXiv:1707.04351 [math.CO], 2017, Theorem 1.1, r=2, k=0.
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Lemma 2.1, k=2, 0 peaks.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
- Nicolas Ollinger and Jeffrey Shallit, The Repetition Threshold for Rote Sequences, arXiv:2406.17867 [math.CO], 2024.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- A. G. Shannon, Some recurrence relations for binary sequence matrices, NNTDM 17 (2011), 4, 913.
- Bojan Vučković and Miodrag Živković, Row Space Cardinalities Above 2^(n - 2) + 2^(n - 3), ResearchGate, January 2017, p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1).
Crossrefs
Cf. A001608, A004148, A005314, A006498, A011973, A049864, A049853, A078065, A118891, A173022, A176971, A178470, A261041, A303696, A329871, A384153.
Bisection of Padovan sequence A000931.
Compositions without adjacent equal parts are A003242.
Compositions without isolated parts are A114901.
Row sums of A097230(n-2) for n>1.
Programs
-
Haskell
a005251 n = a005251_list !! n a005251_list = 0 : 1 : 1 : 1 : zipWith (+) a005251_list (drop 2 $ zipWith (+) a005251_list (tail a005251_list)) -- Reinhard Zumkeller, Dec 28 2011
-
Magma
I:=[0,1,1,1]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-4): n in [1..45]]; // Vincenzo Librandi, Nov 30 2018
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-x)/(1-2*x + x^2 - x^3) )); // Marius A. Burtea, Oct 24 2019 -
Maple
A005251 := proc(n) option remember; if n <= 2 then n elif n = 3 then 4 else 2*A005251(n - 1) - A005251(n - 2) + A005251(n - 3); fi; end; A005251:=(-1+z)/(-1+2*z-z**2+z**3); # Simon Plouffe in his 1992 dissertation a := n -> `if`(n<=1, n, hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4)): seq(simplify(a(n)), n=0..36); # Peter Luschny, Apr 08 2018
-
Mathematica
LinearRecurrence[{2,-1,1},{0,1,1},40] (* Harvey P. Dale, May 05 2011 *) a[ n_]:= If[n<0, SeriesCoefficient[ -x(1-x)/(1 -x + 2x^2 -x^3), {x, 0, -n}], SeriesCoefficient[ x(1-x)/(1 -2x +x^2 -x^3), {x, 0, n}]] (* Michael Somos, Dec 13 2013 *) a[0] = 1; a[1] = a[2] = 0; a[n_] := a[n] = a[n-2] + a[n-3]; Table[a[2 n-1], {n, 1, 20}] (* Rigoberto Florez, Oct 15 2019 *) Table[If[n==0,0,Length[DeleteCases[Subsets[Range[n-3]],{_,x_,y_,_}/;x+2==y]]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
-
PARI
Vec((1-x)/(1-2*x+x^2-x^3)+O(x^99)) /* Charles R Greathouse IV, Nov 20 2012 */
-
PARI
{a(n) = if( n<0, polcoeff( -x*(1-x)/(1 -x +2*x^2 -x^3) + x*O(x^-n), -n), polcoeff( x*(1-x)/(1 -2*x +x^2 -x^3) + x*O(x^n), n))} /* Michael Somos, Dec 13 2013 */
-
SageMath
[sum( binomial(n-j-1, 2*j) for j in (0..floor((n-1)/3)) ) for n in (0..50)] # G. C. Greubel, Apr 13 2022
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3).
G.f.: z*(1-z)/(1 - 2*z + z^2 - z^3). - Emeric Deutsch, Sep 13 2004
23*a_n = 3*P_{2n+1} + 7*P_{2n} - 2*P_{2n-1}, where P_n are the Perrin numbers, A001608. - Don Knuth, Dec 09 2008
a(n+1) = Sum_{k=0..n} binomial(n-k, 2k). - Richard L. Ollerton, May 12 2004
From Henry Bottomley, Feb 21 2001: (Start)
a(n) = (Sum_{j
a(n) = A049853(n-1) - a(n-1).
a(n) = A005314(n) - a(n-2). (End)
a(n+2) has g.f. (F_3(-x) + F_2(-x))/(F_4(-x) + F_3(-x)) = 1/(-x+1/(-x+1/(-x+1))) where F_n(x) is the n-th Fibonacci polynomial; see A011973. - Qiaochu Yuan (qchu(AT)mit.edu), Feb 19 2009
a(n) = A173022(2^(n-2) - 1) for n > 1. - Reinhard Zumkeller, Feb 07 2010
BINOMIAL transform of A176971 is a(n+1). - Michael Somos, Dec 13 2013
a(n) = hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4) for n > 1. - Peter Luschny, Apr 08 2018
G.f.: z/(1-z-z^3-z^4-z^5-...) for the compositions of n-1 avoiding 2. The g.f. for the number of compositions of n avoiding the part k is 1/(1-z-...-z^(k-1) - z^(k+1)-...). - Gregory L. Simay, Sep 09 2018
If p,q,r are the three solutions to x^3 = 2x^2 - x + 1, then a(n) = (p-1)*p^n/((p-q)*(p-r)) + (q-1)*q^n/((q-p)*(q-r)) + (r-1)*r^n/((r-p)*(r-q)). - Greg Dresden and AnXing Yang, Aug 12 2025
A005314 For n = 0, 1, 2, a(n) = n; thereafter, a(n) = 2*a(n-1) - a(n-2) + a(n-3).
0, 1, 2, 3, 5, 9, 16, 28, 49, 86, 151, 265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396, 128801, 226030, 396655, 696081, 1221537, 2143648, 3761840, 6601569, 11584946, 20330163, 35676949, 62608681, 109870576, 192809420, 338356945, 593775046
Offset: 0
Comments
Number of compositions of n into parts congruent to {1,2} mod 4. - Vladeta Jovovic, Mar 10 2005
a(n)/a(n-1) tends to A109134; an eigenvalue of the matrix M and a root to the characteristic polynomial. - Gary W. Adamson, May 25 2007
Starting with offset 1 = INVERT transform of (1, 1, 0, 0, 1, 1, 0, 0, ...). - Gary W. Adamson, May 04 2009
a(n-2) is the top left entry of the n-th power of the 3 X 3 matrix [0, 1, 0; 0, 1, 1; 1, 0, 1] or of the 3 X 3 matrix [0, 0, 1; 1, 1, 0; 0, 1, 1]. - R. J. Mathar, Feb 03 2014
Counts closed walks of length (n+2) at a vertex of a unidirectional triangle containing a loop on remaining two vertices. - David Neil McGrath, Sep 15 2014
Also the number of binary words of length n that begin with 1 and avoid the subword 101. a(5) = 9: 10000, 10001, 10010, 10011, 11000, 11001, 11100, 11110, 11111. - Alois P. Heinz, Jul 21 2016
Also the number of binary words of length n-1 such that every two consecutive 0s are immediately followed by at least two consecutive 1s. a(4) = 5: 010, 011, 101, 110, 111. - Jerrold Grossman, May 03 2024
Examples
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 16*x^6 + 28*x^7 + 49*x^8 + ... From _Gus Wiseman_, Nov 25 2019: (Start) a(n) is the number of subsets of {1..n} containing n such that if x and x + 2 are both in the subset, then so is x + 1. For example, the a(1) = 1 through a(5) = 9 subsets are: {1} {2} {3} {4} {5} {1,2} {2,3} {1,4} {1,5} {1,2,3} {3,4} {2,5} {2,3,4} {4,5} {1,2,3,4} {1,2,5} {1,4,5} {3,4,5} {2,3,4,5} {1,2,3,4,5} (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..400
- Isha Agarwal, Matvey Borodin, Aidan Duncan, Kaylee Ji, Tanya Khovanova, Shane Lee, Boyan Litchev, Anshul Rastogi, Garima Rastogi, and Andrew Zhao, From Unequal Chance to a Coin Game Dance: Variants of Penney's Game, arXiv:2006.13002 [math.HO], 2020.
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Permutations avoiding a simsun pattern, The Electronic Journal of Combinatorics (2020) Vol. 27, Issue 3, P3.45.
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- Hung Viet Chu and Zachary Louis Vasseur, Schreier Sets of Multiples of an Integer, Linear Recurrence, and Pascal Triangle, arXiv:2506.14312 [math.CO], 2025. See Table 1 p. 2.
- Christian Ennis, William Holland, Omer Mujawar, Aadit Narayanan, Frank Neubrander, Marie Neubrander, and Christina Simino, Words in Random Binary Sequences I, arXiv:2107.01029 [math.GM], 2021.
- R. L. Graham and N. J. A. Sloane, Anti-Hadamard matrices, Linear Alg. Applic., 62 (1984), 113-137.
- Jia Huang, A coin flip game and generalizations of Fibonacci numbers, arXiv:2501.07463 [math.CO], 2025. See pp. 8, 10.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 426
- L. A. Medina and A. Straub, On multiple and infinite log-concavity, 2013, preprint Annals of Combinatorics, March 2016, Volume 20, Issue 1, pp 125-138.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Bojan Vučković and Miodrag Živković, Row Space Cardinalities Above 2^(n - 2) + 2^(n - 3), ResearchGate, January 2017, p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1).
Crossrefs
Programs
-
Haskell
a005314 n = a005314_list !! n a005314_list = 0 : 1 : 2 : zipWith (+) a005314_list (tail $ zipWith (-) (map (2 *) $ tail a005314_list) a005314_list) -- Reinhard Zumkeller, Oct 14 2011
-
Magma
[0] cat [n le 3 select n else 2*Self(n-1) - Self(n-2) + Self(n-3):n in [1..35]]; // Marius A. Burtea, Oct 24 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 36); [0] cat Coefficients(R!( x/(1-2*x+x^2-x^3))); // Marius A. Burtea, Oct 24 2019 -
Maple
A005314 := proc(n) option remember ; if n <=2 then n; else 2*procname(n-1)-procname(n-2)+procname(n-3) ; end if; end proc: seq(A005314(n),n=0..20) ; # R. J. Mathar, Feb 25 2024
-
Mathematica
LinearRecurrence[{2, -1, 1}, {0, 1, 2}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *) Table[Sum[Binomial[n - Floor[(k + 1)/2], n - Floor[(3 k - 1)/2]], {k, 0, n}], {n, 0, 100}] (* John Molokach, Jul 21 2013 *) Table[Sum[Binomial[n - Floor[(4 n + 15 - 6 k + (-1)^k)/12], n - Floor[(4 n + 15 - 6 k + (-1)^k)/12] - Floor[(2 n - 1)/3] + k - 1], {k, 1, Floor[(2 n + 2)/3]}], {n, 0, 100}] (* John Molokach, Jul 25 2013 *) a[ n_] := If[ n < 0, SeriesCoefficient[ x^2 / (1 - x + 2 x^2 - x^3), {x, 0, -n}], SeriesCoefficient[ x / (1 - 2 x + x^2 - x^3), {x, 0, n}]]; (* Michael Somos, Dec 13 2013 *) RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==2a[n-1]-a[n-2]+a[n-3]},a,{n,40}] (* Harvey P. Dale, May 13 2018 *) Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!MatchQ[#,{_,x_,y_,_}/;x+2==y]&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
-
PARI
{a(n) = sum(k=0, (2*n-1)\3, binomial(n-1-k\2, k))}
-
PARI
{a(n) = if( n<0, polcoeff( x^2 / (1 - x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( x / (1 - 2*x + x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
-
SageMath
def A005314(n): return sum( binomial(n-k, 2*k+1) for k in range(floor((n+2)/3)) ) [A005314(n) for n in range(51)] # G. C. Greubel, Nov 10 2023
Formula
From Paul D. Hanna, Oct 22 2004: (Start)
G.f.: x/(1-2*x+x^2-x^3).
a(n) = Sum_{k=0..[(2n-1)/3]} binomial(n-1-[k/2], k), where [x]=floor(x). (End)
a(n) = Sum_{k=0..n} binomial(n-k, 2*k+1).
23*a_n = 3*P_{2n+2} + 7*P_{2n+1} - 2*P_{2n}, where P_n are the Perrin numbers, A001608. - Don Knuth, Dec 09 2008
G.f. (1-z)*(1+z^2)/(1-2*z+z^2-z^3) for the augmented version 1, 1, 2, 3, 5, 9, 16, 28, 49, 86, 151, ... was given in Simon Plouffe's thesis of 1992.
a(n) = a(n-1) + a(n-2) + a(n-4) = a(n-2) + A049853(n-1) = a(n-1) + A005251(n) = Sum_{i <= n} A005251(i).
a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-k, 2*k+1). - Richard L. Ollerton, May 12 2004
M^n*[1,0,0] = [a(n-2), a(n-1), a]; where M = the 3 X 3 matrix [0,1,0; 0,0,1; 1,-1,2]. Example M^5*[1,0,0] = [3,5,9]. - Gary W. Adamson, May 25 2007
a(n) = A000931(2*n + 4). - Michael Somos, Sep 18 2012
a(n) = A077954(-n - 2). - Michael Somos, Sep 18 2012
G.f.: 1/( 1 - Sum_{k>=0} x*(x-x^2+x^3)^k ) - 1. - Joerg Arndt, Sep 30 2012
a(n) = Sum_{k=0..n} binomial( n-floor((k+1)/2), n-floor((3k-1)/2) ). - John Molokach, Jul 21 2013
a(n) = Sum_{k=1..floor((2*n+2)/3)} binomial(n - floor((4*n+15-6*k+(-1)^k)/12), n - floor((4*n+15-6*k+(-1)^k)/12) - floor((2*n-1)/3) + k - 1). - John Molokach, Jul 24 2013
a(n) = round(A001608(2n+1)*r) where r is the real root of 23*x^3 - 23*x^2 + 8*x - 1 = 0, r = 0.4114955... - Richard Turk, Oct 24 2019
a(n+2) = n + 2 + Sum_{k=0..n} (n-k)*a(k). - Greg Dresden and Yichen P. Wang, Sep 16 2021
a(n) ~ (19 - r + 11*r^2) / (23 * r^(n-1)), where r = 0.569840290998... is the root of the equation r*(2 - r + r^2) = 1. - Vaclav Kotesovec, Apr 14 2024
a(n) = n*3F2(1/3-n/3,2/3-n/3,1-n/3;-n,3/2;27/4). - R. J. Mathar, Jun 27 2024
If p,q,r are the three solutions to x^3 = 2x^2 - x + 1, then a(n) = p^(n+1)/((p-q)*(p-r)) + q^(n+1)/((q-p)*(q-r)) + r^(n+1)/((r-p)*(r-q)). Compare to similar formula for A005251. - Greg Dresden and AnXing Yang, Aug 19 2025
Extensions
More terms and additional formulas from Henry Bottomley, Jul 21 2000
Plouffe's g.f. edited by R. J. Mathar, May 12 2008
A070550 a(n) = a(n-1) + a(n-3) + a(n-4), starting with a(0..3) = 1, 2, 2, 3.
1, 2, 2, 3, 6, 10, 15, 24, 40, 65, 104, 168, 273, 442, 714, 1155, 1870, 3026, 4895, 7920, 12816, 20737, 33552, 54288, 87841, 142130, 229970, 372099, 602070, 974170, 1576239, 2550408, 4126648, 6677057, 10803704, 17480760, 28284465, 45765226
Offset: 0
Comments
Shares some properties with Fibonacci sequence.
The sum of any two alternating terms (terms separated by one other term) produces a Fibonacci number (e.g., 2+6=8, 3+10=13, 24+65=89). The product of any two consecutive or alternating Fibonacci terms produces a term from this sequence (e.g., 5*8 = 40, 13*5 = 65, 21*8 = 168).
In Penney's game (see A171861), the number of ways that HTH beats HHH on flip 3,4,5,... - Ed Pegg Jr, Dec 02 2010
The Ca2 sums (see A180662 for the definition of these sums) of triangle A035607 equal the terms of this sequence. - Johannes W. Meijer, Aug 05 2011
Examples
G.f.: 1 + 2*x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 24*x^7 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- David Applegate, Marc LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq., Vol. 14 (2011), Article # 11.9.8.
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Programs
-
Haskell
a070550 n = a070550_list !! n a070550_list = 1 : 2 : 2 : 3 : zipWith (+) a070550_list (zipWith (+) (tail a070550_list) (drop 3 a070550_list)) -- Reinhard Zumkeller, Aug 06 2011
-
Maple
with(combinat): A070550 := proc(n): fibonacci(floor(n/2)+1) * fibonacci(ceil(n/2)+2) end: seq(A070550(n),n=0..37); # Johannes W. Meijer, Aug 05 2011
-
Mathematica
LinearRecurrence[{1, 0, 1, 1}, {1, 2, 2, 3}, 40] (* Jean-François Alcover, Jan 27 2018 *) nxt[{a_,b_,c_,d_}]:={b,c,d,a+b+d}; NestList[nxt,{1,2,2,3},40][[;;,1]] (* Harvey P. Dale, Jul 16 2024 *)
-
PARI
A070550(n) = fibonacci(n\2+1)*fibonacci((n+5)\2) \\ M. F. Hasler, Aug 06 2011
-
PARI
x='x+O('x^100); Vec((1+x)/(1-x-x^3-x^4)) \\ Altug Alkan, Dec 24 2015
Formula
a(n) = F(floor(n/2)+1)*F(ceiling(n/2)+2), with F(n) = A000045(n). - Ralf Stephan, Apr 14 2004
G.f.: (1+x)/(1-x-x^3-x^4) = (1+x)/((1+x^2)*(1-x-x^2))
a(n) = A126116(n+4) - F(n+3). - Johannes W. Meijer, Aug 05 2011
a(n) = (1+3*i)/10*(-i)^n + (1-3*i)/10*(i)^n + (2+sqrt(5))/5*((1+sqrt(5))/2)^n + (2-sqrt(5))/5*((1-sqrt(5))/2)^n, where i = sqrt(-1). - Sergei N. Gladkovskii, Jul 16 2013
a(n+1)*a(n+3) = a(n)*a(n+2) + a(n+1)*a(n+2) for all n in Z. - Michael Somos, Jan 19 2014
Sum_{n>=1} 1/a(n) = A290565. - Amiram Eldar, Feb 17 2021
Comments