cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Yichen P. Wang

Yichen P. Wang's wiki page.

Yichen P. Wang has authored 1 sequences.

A347493 a(0) = 1, a(1) = 0, a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 8, 13, 24, 41, 73, 127, 224, 392, 689, 1208, 2121, 3721, 6531, 11460, 20112, 35293, 61936, 108689, 190737, 334719, 587392, 1030800, 1808929, 3174448, 5570769, 9776017, 17155715, 30106180, 52832664, 92714861, 162703240, 285524281, 501060185, 879299327, 1543062752
Offset: 0

Author

Greg Dresden and Yichen P. Wang, Sep 03 2021

Keywords

Comments

a(n) is also the number of ways to tile a strip of length n with squares, dominoes, and tetrominoes such that the first tile is NOT a square. As such, it completes the set of such tilings with A005251 (first tile is NOT a domino), A005314 (first tile is NOT a tetromino), and A060945 (no restrictions on first tile).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - x - x^2 - x^4), {x, 0, 40}], x] (* Michael De Vlieger, Mar 04 2022 *)
    LinearRecurrence[{1,1,0,1},{1,0,1,1},60] (* Harvey P. Dale, Aug 17 2023 *)

Formula

a(n) = 2*A060945(n) - A005251(n) - A005314(n).
G.f.: (1 - x)/(1 - x - x^2 - x^4).
Sum_{k=0..n} a(k)*F(n-k) = a(n+3) - F(n+2) for F(n)=A000045(n) the Fibonacci numbers.
5*a(n) = 2*(-1)^n + 3*A005314(n+1) -4*A005314(n) +2*A005314(n-1). - R. J. Mathar, Sep 30 2021