A005251 a(0) = 0, a(1) = a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).
0, 1, 1, 1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, 616, 1081, 1897, 3329, 5842, 10252, 17991, 31572, 55405, 97229, 170625, 299426, 525456, 922111, 1618192, 2839729, 4983377, 8745217, 15346786, 26931732, 47261895, 82938844, 145547525, 255418101, 448227521
Offset: 0
Examples
From _Joerg Arndt_, Jan 26 2013: (Start) The a(5+2) = 12 compositions of 5 where no two adjacent parts are != 1 are [ 1] [ 1 1 1 1 1 ] [ 2] [ 1 1 1 2 ] [ 3] [ 1 1 2 1 ] [ 4] [ 1 1 3 ] [ 5] [ 1 2 1 1 ] [ 6] [ 1 3 1 ] [ 7] [ 1 4 ] [ 8] [ 2 1 1 1 ] [ 9] [ 2 1 2 ] [10] [ 3 1 1 ] [11] [ 4 1 ] [12] [ 5 ] (End) G.f. = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 12*x^7 + 21*x^8 + 37*x^9 + ...
References
- S. Burckel, Efficient methods for three strand braids (submitted). [Apparently unpublished]
- P. Chinn and S. Heubach, "Compositions of n with no occurrence of k", Congressus Numeratium, 2002, v. 162, pp. 33-51.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 205.
- R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, Cyclic permutations avoiding patterns in both one-line and cycle forms, arXiv:2312.05145 [math.CO], 2023. See p. 2.
- Andrei Asinowski and Cyril Banderier, On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020) Leibniz International Proceedings in Informatics (LIPIcs) Vol. 159, 1:1-1:16.
- R. Austin and R. K. Guy, Binary sequences without isolated ones, Fib. Quart., 16 (1978), 84-86.
- J.-L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016). See Table 4.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- N. Bergeron, S. Mykytiuk, F. Sottile and S. van Willigenburg, Shifted quasisymmetric functions and the Hopf algebra of peak functions, arXiv:math/9904105 [math.CO], 1999.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 11.
- A. Blecher, C. Brennan, A. Knopfmacher and H. Prodinger, The height and width of bargraphs, Discrete Applied Math. 180, (2015), 36-44.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 112.
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Properties of a Ternary Infinite Word, arXiv:2206.01776 [cs.DM], 2022.
- James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Complement Avoidance in Binary Words, arXiv:2209.09598 [math.CO], 2022.
- J. Demetrovics et al., On the number of unions in a family of sets, in Combinatorial Math., Proc. 3rd Internat. Conf., Annals NY Acad. Sci., 555 (1989), 150-158.
- R. Doroslovacki, Binary sequences without 011...110 (k-1 1's) for fixed k, Mat. Vesnik 46 (1994), no. 3-4, 93-98.
- Nazim Fatès, Biswanath Sethi, and Sukanta Das, On the Reversibility of ECAs with Fully Asynchronous Updating: The Recurrence Point of View, in Reversibility and Universality, Andrew Adamatzky, editor, Emergence, Complexity and Computation Vol. 30. Springer, 2018.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- R. L. Graham and N. J. A. Sloane, Anti-Hadamard matrices, Linear Alg. Applic., 62 (1984), 113-137.
- R. K. Guy, Letter to N. J. A. Sloane, Feb 1986
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,2).
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 98
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart. 44 (2006), no. 4, 335-340.
- Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras II. Satisfaction of bracketing identities, spectrum dichotomy, arXiv:2011.08522 [math.CO], 2020.
- J. J. Madden, A generating function for the distribution of runs in binary words, arXiv:1707.04351 [math.CO], 2017, Theorem 1.1, r=2, k=0.
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Lemma 2.1, k=2, 0 peaks.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
- Nicolas Ollinger and Jeffrey Shallit, The Repetition Threshold for Rote Sequences, arXiv:2406.17867 [math.CO], 2024.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- A. G. Shannon, Some recurrence relations for binary sequence matrices, NNTDM 17 (2011), 4, 913.
- Bojan Vučković and Miodrag Živković, Row Space Cardinalities Above 2^(n - 2) + 2^(n - 3), ResearchGate, January 2017, p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1).
Crossrefs
Cf. A001608, A004148, A005314, A006498, A011973, A049864, A049853, A078065, A118891, A173022, A176971, A178470, A261041, A303696, A329871, A384153.
Bisection of Padovan sequence A000931.
Compositions without adjacent equal parts are A003242.
Compositions without isolated parts are A114901.
Row sums of A097230(n-2) for n>1.
Programs
-
Haskell
a005251 n = a005251_list !! n a005251_list = 0 : 1 : 1 : 1 : zipWith (+) a005251_list (drop 2 $ zipWith (+) a005251_list (tail a005251_list)) -- Reinhard Zumkeller, Dec 28 2011
-
Magma
I:=[0,1,1,1]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-4): n in [1..45]]; // Vincenzo Librandi, Nov 30 2018
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-x)/(1-2*x + x^2 - x^3) )); // Marius A. Burtea, Oct 24 2019 -
Maple
A005251 := proc(n) option remember; if n <= 2 then n elif n = 3 then 4 else 2*A005251(n - 1) - A005251(n - 2) + A005251(n - 3); fi; end; A005251:=(-1+z)/(-1+2*z-z**2+z**3); # Simon Plouffe in his 1992 dissertation a := n -> `if`(n<=1, n, hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4)): seq(simplify(a(n)), n=0..36); # Peter Luschny, Apr 08 2018
-
Mathematica
LinearRecurrence[{2,-1,1},{0,1,1},40] (* Harvey P. Dale, May 05 2011 *) a[ n_]:= If[n<0, SeriesCoefficient[ -x(1-x)/(1 -x + 2x^2 -x^3), {x, 0, -n}], SeriesCoefficient[ x(1-x)/(1 -2x +x^2 -x^3), {x, 0, n}]] (* Michael Somos, Dec 13 2013 *) a[0] = 1; a[1] = a[2] = 0; a[n_] := a[n] = a[n-2] + a[n-3]; Table[a[2 n-1], {n, 1, 20}] (* Rigoberto Florez, Oct 15 2019 *) Table[If[n==0,0,Length[DeleteCases[Subsets[Range[n-3]],{_,x_,y_,_}/;x+2==y]]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
-
PARI
Vec((1-x)/(1-2*x+x^2-x^3)+O(x^99)) /* Charles R Greathouse IV, Nov 20 2012 */
-
PARI
{a(n) = if( n<0, polcoeff( -x*(1-x)/(1 -x +2*x^2 -x^3) + x*O(x^-n), -n), polcoeff( x*(1-x)/(1 -2*x +x^2 -x^3) + x*O(x^n), n))} /* Michael Somos, Dec 13 2013 */
-
SageMath
[sum( binomial(n-j-1, 2*j) for j in (0..floor((n-1)/3)) ) for n in (0..50)] # G. C. Greubel, Apr 13 2022
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3).
G.f.: z*(1-z)/(1 - 2*z + z^2 - z^3). - Emeric Deutsch, Sep 13 2004
23*a_n = 3*P_{2n+1} + 7*P_{2n} - 2*P_{2n-1}, where P_n are the Perrin numbers, A001608. - Don Knuth, Dec 09 2008
a(n+1) = Sum_{k=0..n} binomial(n-k, 2k). - Richard L. Ollerton, May 12 2004
From Henry Bottomley, Feb 21 2001: (Start)
a(n) = (Sum_{j
a(n) = A049853(n-1) - a(n-1).
a(n) = A005314(n) - a(n-2). (End)
a(n+2) has g.f. (F_3(-x) + F_2(-x))/(F_4(-x) + F_3(-x)) = 1/(-x+1/(-x+1/(-x+1))) where F_n(x) is the n-th Fibonacci polynomial; see A011973. - Qiaochu Yuan (qchu(AT)mit.edu), Feb 19 2009
a(n) = A173022(2^(n-2) - 1) for n > 1. - Reinhard Zumkeller, Feb 07 2010
BINOMIAL transform of A176971 is a(n+1). - Michael Somos, Dec 13 2013
a(n) = hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4) for n > 1. - Peter Luschny, Apr 08 2018
G.f.: z/(1-z-z^3-z^4-z^5-...) for the compositions of n-1 avoiding 2. The g.f. for the number of compositions of n avoiding the part k is 1/(1-z-...-z^(k-1) - z^(k+1)-...). - Gregory L. Simay, Sep 09 2018
If p,q,r are the three solutions to x^3 = 2x^2 - x + 1, then a(n) = (p-1)*p^n/((p-q)*(p-r)) + (q-1)*q^n/((q-p)*(q-r)) + (r-1)*r^n/((r-p)*(r-q)). - Greg Dresden and AnXing Yang, Aug 12 2025
A011973 Irregular triangle read by rows: T(n,k) = binomial(n-k, k), n >= 0, 0 <= k <= floor(n/2); or, coefficients of (one version of) Fibonacci polynomials.
1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 3, 1, 5, 6, 1, 1, 6, 10, 4, 1, 7, 15, 10, 1, 1, 8, 21, 20, 5, 1, 9, 28, 35, 15, 1, 1, 10, 36, 56, 35, 6, 1, 11, 45, 84, 70, 21, 1, 1, 12, 55, 120, 126, 56, 7, 1, 13, 66, 165, 210, 126, 28, 1, 1, 14, 78, 220, 330, 252, 84, 8, 1, 15, 91, 286, 495, 462
Offset: 0
Comments
T(n,k) is the number of subsets of {1,2,...,n-1} of size k and containing no consecutive integers. Example: T(6,2)=6 because the subsets of size 2 of {1,2,3,4,5} with no consecutive integers are {1,3},{1,4},{1,5},{2,4},{2,5} and {3,5}. Equivalently, T(n,k) is the number of k-matchings of the path graph P_n. - Emeric Deutsch, Dec 10 2003
T(n,k) = number of compositions of n+2 into k+1 parts, all >= 2. Example: T(6,2)=6 because we have (2,2,4),(2,4,2),(4,2,2),(2,3,3),(3,2,3) and (3,3,2). - Emeric Deutsch, Apr 09 2005
Given any recurrence sequence S(k) = x*a(k-1) + a(k-2), starting (1, x, x^2+1, ...); the (k+1)-th term of the series = f(x) in the k-th degree polynomial: (1, (x), (x^2 + 1), (x^3 + 2x), (x^4 + 3x^2 + 1), (x^5 + 4x^3 + 3x), (x^6 + 5x^4 + 6x^2 + 1), ...). Example: let x = 2, then S(k) = 1, 2, 5, 12, 29, 70, 169, ... such that A000129(7) = 169 = f(x), x^6 + 5x^4 + 6x^2 + 1 = (64 + 80 + 24 + 1). - Gary W. Adamson, Apr 16 2008
Row k gives the nonzero coefficients of U(k,x/2) where U is the Chebyshev polynomial of the second kind. For example, row 6 is 1,5,6,1 and U(6,x/2) = x^6 - 5x^4 + 6x^2 - 1. - David Callan, Jul 22 2008
T(n,k) is the number of nodes at level k in the Fibonacci tree f(k-1). The Fibonacci trees f(k) of order k are defined as follows: 1. f(-1) and f(0) each consist of a single node. 2. For k >= 1, to the root of f(k-1), taken as the root of f(k), we attach with a rightmost edge the tree f(k-2). See the Iyer and Reddy references. These trees are not the same as the Fibonacci trees in A180566. Example: T(3,0)=1 and T(3,1)=2 because in f(2) = /\ we have 1 node at level 0 and 2 nodes at level 1. - Emeric Deutsch, Jun 21 2011
Triangle, with zeros omitted, given by (1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
Riordan array (1/(1-x),x^2/(1-x). - Philippe Deléham, Dec 12 2011
This sequence is the elements on the rising diagonals of the Pascal triangle, where the sum of the elements in each rising diagonal represents a Fibonacci number. - Mohammad K. Azarian, Mar 08 2012
If we set F(0;x) = 0, F(1;x) = 1, F(n+1;x) = x*F(n;x) + F(n-1;x), then we obtain the sequence of Vieta-Fibonacci polynomials discussed by Gary W. Adamson above. We note that F(n;x) = (-i)^n * U(n;i*x/2), where U denotes the respective Chebyshev polynomial of the second kind (see David Callan's remark above). Let us fix a,b,f(0),f(1) in C, b is not the zero, and set f(n) = a*f(n-1) + b*f(n-2). Then we deduce the relation: f(n) = b^((n-1)/2) * F(n;a/sqrt(b))*f(1) + b^(n/2) * F(n-1;a/sqrt(b))*f(0), where for a given value of the complex root sqrt(b) we set b^(n/2) = (sqrt(b))^n. Moreover, if b=1 then we get f(n+k) + (-1)^k * f(n-k) = L(k;a)*f(n), for every k=0,1,...,n, and where L(0;a)=2, L(1;a)=a, L(n+1;a)=a*L(n;a) + L(n-1;a) are the Vieta-Lucas polynomials. Let us observe that L(n+2;a) = F(n+2;a) + F(n;a), L(m+n;a) = L(m;a)*F(n;a) + L(m-1;a)*F(n-1;a), which implies also L(n+1;a) = a*F(n;a) + 2*F(n-1;a). Further we have L(n;a) = 2*(-i)^n * T(n;i*x/2), where T(n;x) denotes the n-th Chebyshev polynomial of the first kind. For the proofs, other relations and facts - see Witula-Slota's papers. - Roman Witula, Oct 12 2012
The diagonal sums of this triangle are A000930. - John Molokach, Jul 04 2013
Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014
For a mirrored, shifted version showing the relation of these coefficients to the Pascal triangle, Fibonacci, and other number triangles, see A030528. See also A053122 for a relation to Cartan matrices. - Tom Copeland, Nov 04 2014
For a relation to a formulation for a universal Lie Weyl algebra for su(1,1), see page 16 of Durov et al. - Tom Copeland, Nov 29 2014
A reversed, signed and aerated version is given by A049310, related to Chebyshev polynomials. - Tom Copeland, Dec 06 2015
For n >= 3, the n-th row gives the coefficients of the independence polynomial of the (n-2)-path graph P_{n-2}. - Eric W. Weisstein, Apr 07 2017
For n >= 2, the n-th row gives the coefficients of the matching-generating polynomial of the (n-1)-path graph P_{n-1}. - Eric W. Weisstein, Apr 10 2017
Antidiagonals of the Pascal matrix A007318 read bottom to top. These are also the antidiagonals read from top to bottom of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper), which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Reverse is A102426. - Tom Copeland, Jul 02 2018
T(n,k) is the number of Markov equivalence classes with skeleton the path on n+1 nodes having exactly k immoralities. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - Liam Solus, Aug 23 2018
T(n, k) = number of compositions of n+1 into n+1-2*k odd parts. For example, T(6,2) = 6 because 7 = 5+1+1 = 3+3+1 = 3+1+3 = 1+1+5 = 1+3+3 = 1+1+5. - Michael Somos, Sep 19 2019
From Gary W. Adamson, Apr 25 2022: (Start)
Alternate rows can be parsed into those with odd integer coefficients to the right of the leftmost 1, and those with even integer coefficients to the right of the leftmost 1. The first set is shown in A054142 and are characteristic polynomials of submatrices of an infinite tridiagonal matrix (A332602) with all -1's in the super and subdiagonals and (1,2,2,2,...) as the main diagonal. For example, the characteristic equation of the 3 X 3 submatrix (1,-1,0; -1,2,-1; 0,-1,2) is x^3 - 5x^2 + 6x - 1. The roots are the Beraha constants B(7,1) = 3.24697...; B(7,2) = 1.55495...; and B(7,3) = 0.198062.... For n X n matrices of this form, the largest eigenvalue is B(2n+1, 1). The 3 X 3 matrix has an eigenvalue of 3.24697... = B(7,1).
Polynomials with even integer coefficients to the right of the leftmost 1 are in A053123 with roots being the even-indexed Beraha constants. The generating Cartan matrices are those with (2,2,2,...) as the main diagonal and -1's as the sub- and superdiagonals. The largest eigenvalue of n X n matrices of this form are B(2n+2,1). For example, the largest eigenvalue of (2,-1,0; -1,2,-1; 0,-1,2) is 3.414... = B(8,1) = a root to x^3 - 6x^2 + 10x - 4. (End)
T(n,k) is the number of edge covers of P_(n+2) with (n-k) edges. For example, T(6,2)=6 because among edges 1, 2, ..., 7 of P_8, we can eliminate any two non-consecutive edges among 2-6. These numbers can be found using the recurrence relation for the edge cover polynomial of P_n, which is E(P_n,x) = xE(P_(n-1),x)+xE(P_(n-2),x) and E(P_1,x)=0, E(P_2,x)=x (ref. Akbari and Oboudi). - Feryal Alayont, Jun 03 2022
T(n,k) is the number of ways to tile an n-board (an n X 1 array of 1 X 1 cells) using k dominoes and n-2*k squares. - Michael A. Allen, Dec 28 2022
T(n,k) is the number of positive integer sequences (s(1),s(2),...,s(n-2k)) such that s(i) < s(i+1), s(1) is odd, s(n-2k) <= n, and s(i) and s(i+1) have opposite parity (ref. Donnelly, Dunkum, and McCoy). Example: T(6,0)=1 corresponds to 123456; T(6,1)=5 corresponds to 1234, 1236, 1256, 1456, 3456; T(6,2)=6 corresponds to 12, 14, 16, 34, 36; and T(6,3)=1 corresponds to the empty sequence () with length 0. - Molly W. Dunkum, Jun 27 2023
Examples
The first few Fibonacci polynomials (defined here by F(0,x) = 0, F(1,x) = 1; F(n+1, x) = F(n, x) + x*F(n-1, x)) are: 0: 0 1: 1 2: 1 3: 1 + x 4: 1 + 2*x 5: 1 + 3*x + x^2 6: (1 + x)*(1 + 3*x) 7: 1 + 5*x + 6*x^2 + x^3 8: (1 + 2*x)*(1 + 4*x + 2*x^2) 9: (1 + x)*(1 + 6*x + 9*x^2 + x^3) 10: (1 + 3*x + x^2 )*(1 + 5*x + 5*x^2) 11: 1 + 9*x + 28*x^2 + 35*x^3 + 15*x^4 + x^5 From _Roger L. Bagula_, Feb 20 2009: (Start) 1 1 1 1 1 2 1 3 1 1 4 3 1 5 6 1 1 6 10 4 1 7 15 10 1 1 8 21 20 5 1 9 28 35 15 1 1 10 36 56 35 6 1 11 45 84 70 21 1 1 12 55 120 126 56 7 (End) For n=9 and k=4, T(9,4) = C(5,4) = 5 since there are exactly five size-4 subsets of {1,2,...,8} that contain no consecutive integers, namely, {1,3,5,7}, {1,3,5,8}, {1,3,6,8}, {1,4,6,8}, and {2,4,6,8}. - _Dennis P. Walsh_, Mar 31 2011 When the rows of the triangle are displayed as centered text, the falling diagonal sums are A005314. The first few terms are row1 = 1 = 1; row2 = 1+1 = 2; row3 = 2+1 = 3; row4 = 1+3+1 = 5; row5 = 1+3+4+1 = 9; row6 = 4+6+5+1 = 16; row7 = 1+10+10+6+1 = 28; row8 = 1+5+20+15+7+1 = 49; row9 = 6+15+35+21+8+1 = 86; row10 = 1+21+35+56+28+9+1 = 151. - _John Molokach_, Jul 08 2013 In the example, you can see that the n-th row of Pascal's triangle is given by T(n, 0), T(n+1, 1), ..., T(2n-1, n-1), T(2n, n). - _Daniel Forgues_, Jul 07 2018
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 141ff.
- C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
- I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See p. 117.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 182-183.
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- S. Akbari and M. R. Oboudi, On the edge cover polynomial of a graph, European Journal of Combinatorics, 34 (2013), 297-321.
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Michael A. Allen, Connections between Combinations Without Specified Separations and Strongly Restricted Permutations, Compositions, and Bit Strings, arXiv:2409.00624 [math.CO], 2024. See p. 2.
- Michael A. Allen and Kenneth Edwards, On Two Families of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.7.1.
- M. Barnabei, F. Bonetti, S. Elizalde, and M. Silimbani, Descent sets on 321-avoiding involutions and hook decompositions of partitions, arXiv preprint arXiv:1401.3011 [math.CO], 2014.
- Paul Barry, On the duals of the Fibonacci and Catalan-Fibonacci polynomials and Motzkin paths, arXiv:2101.10218 [math.CO], 2021.
- J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 91, 145.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Tom Copeland, Addendum to Elliptic Lie Triad
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
- Alexandru-Nicolae Dimache, Ghiocel Groza, Marilena Jianu, and Iulian Iancu, Existence and Uniqueness of Solution Represented as Fractional Power Series for the Fractional Advection-Dispersion Equation, Symmetry (2024) Vol. 16, No. 9, Art. No. 1137.
- Robert G. Donnelly, Molly W. Dunkum, Murray L. Huber, and Lee Knupp, Sign-alternating Gibonacci polynomials, arXiv:2012.14993 [math.CO], 2020.
- Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras, arXiv:2012.14991 [math.CO], 2020.
- Robert G. Donnelly, Molly W. Dunkum, and Rachel McCoy, Olry Terquem's forgotten problem, arXiv:2303.05949 [math.HO], 2023.
- N. Durov, S. Meljanac, A. Samsarov, and Z. Skoda, A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra, arXiv preprint arXiv:math/0604096 [math.RT], 2006.
- Larry Ericksen, Primality Testing and Prime Constellations, Šiauliai Mathematical Seminar, Vol. 3 (11), 2008. See p. 72.
- E. J. Farrell, An introduction to matching polynomials, J. Comb. Theory B 27 (1) (1979) 75-86, Table 1.
- J. L. Gross, T. Mansour, T. W. Tucker, and D. G. L. Wang, Root geometry of polynomial sequences I: Type (0, 1), arXiv preprint arXiv:1501.06107 [math.CO], 2015.
- A. Holme, A combinatorial proof of the duality defect conjecture in codimension 2, Discrete Math., 241 (2001), 363-378; see p. 375.
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009.
- Peter Kagey, Ranking and Unranking Restricted Permutations, arXiv:2210.17021 [math.CO], 2022.
- I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
- Franklin H.J. Kenter, and Jephian C.-H. Lin, On the error of a priori sampling: zero forcing sets and propagation time, arXiv:1709.08740 [math.CO], 2017.
- Jong Hyun Kim, Hadamard products and tilings, JIS 12 (2009) 09.7.4.
- Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 1A.
- H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 41.
- C.-K. Lim and K. S. Lam, The characteristic polynomial of ladder graphs and an annihilating uniqueness theorem, Discr. Math., 151 (1996), 161-167.
- Paweł Lorek and Piotr Markowski, Conditional gambler's ruin problem with arbitrary winning and losing probabilities with applications, arXiv:1812.00687 [math.PR], 2018.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO], 2016, Section 4.1.
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (Table 3).
- P. Olver, The canonical contact form.
- A. Radhakrishnan, L. Solus, and C. Uhler, Counting Markov equivalence classes for DAG models on trees, Discrete Applied Mathematics 244 (2018): 170-185.
- Michel Rigo, Manon Stipulanti, and Markus A. Whiteland, Gapped Binomial Complexities in Sequences, Univ. Liège (Belgium 2023).
- Fernando Szechtman, Closed formulae for certain Fermat-Pell equations, arXiv:2107.02696 [math.NT], 2021. See Table p. 4.
- Dennis Walsh, Notes on subsets of {1,2,...,n} that contain no consecutive integers.
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
- Eric Weisstein's World of Mathematics, Path Graph
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 26, ex. 12.
- R. Witula and D. Slota, Conjugate sequences in a Fibonacci-Lucas sense and some identities for sums of powers of their elements, Integers: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A08.
- R. Witula and D. Slota, On modified Chebyshev polynomials, J. Math. Anal. Appl., 324 (2006), 321-343.
- R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
- James J. Y. Zhao, Infinite log-concavity and higher order Turán inequality for Speyer's g-polynomial of uniform matroids, arXiv:2409.08085 [math.CO], 2024. See p. 11.
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
a011973 n k = a011973_tabf !! n !! k a011973_row n = a011973_tabf !! n a011973_tabf = zipWith (zipWith a007318) a025581_tabl a055087_tabf -- Reinhard Zumkeller, Jul 14 2015
-
Maple
a := proc(n) local k; [ seq(binomial(n-k,k),k=0..floor(n/2)) ]; end; T := proc(n, k): if k<0 or k>floor(n/2) then return(0) fi: binomial(n-k, k) end: seq(seq(T(n,k), k=0..floor(n/2)), n=0..15); # Johannes W. Meijer, Aug 26 2013
-
Mathematica
(* first: sum method *) Table[CoefficientList[Sum[Binomial[n - m + 1, m]*x^m, {m, 0, Floor[(n + 1)/2]}], x], {n, 0, 12}] (* Roger L. Bagula, Feb 20 2009 *) (* second: polynomial recursion method *) Clear[L, p, x, n, m]; L[x, 0] = 1; L[x, 1] = 1 + x; L[x_, n_] := L[x, n - 1] + x*L[x, n - 2]; Table[ExpandAll[L[x, n]], {n, 0, 10}]; Table[CoefficientList[ExpandAll[L[x, n]], x], {n, 0, 12}]; Flatten[%] (* Roger L. Bagula, Feb 20 2009 *) (* Center option shows falling diagonals are A224838 *) Column[Table[Binomial[n - m, m], {n, 0, 25}, {m, 0, Floor[n/2]}], Center] (* John Molokach, Jul 26 2013 *) Table[ Select[ CoefficientList[ Fibonacci[n, x], x], Positive] // Reverse, {n, 1, 18} ] // Flatten (* Jean-François Alcover, Oct 21 2013 *) CoefficientList[LinearRecurrence[{1, x}, {1 + x, 1 + 2 x}, {-1, 10}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *) CoefficientList[Table[x^((n - 1)/2) Fibonacci[n, 1/Sqrt[x]], {n, 15}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
-
PARI
{T(n, k) = if( k<0 || 2*k>n, 0, binomial(n-k, k))};
-
Sage
# Prints the table; cf. A145574. for n in (2..20): [Compositions(n, length=m, min_part=2).cardinality() for m in (1..n//2)] # Peter Luschny, Oct 18 2012
Formula
Let F(n, x) be the n-th Fibonacci polynomial in x; the g.f. for F(n, x) is Sum_{n>=0} F(n, x)*y^n = (1 + x*y)/(1 - y - x*y^2). - Paul D. Hanna
T(m, n) = 0 for n != 0 and m <= 1 T(0, 0) = T(1, 0) = 1 T(m, n) = T(m - 1, n) + T(m-2, n-1) for m >= 2 (i.e., like the recurrence for Pascal's triangle A007318, but going up one row as well as left one column for the second summand). E.g., T(7, 2) = 10 = T(6, 2) + T(5, 1) = 6 + 4. - Rob Arthan, Sep 22 2003
G.f. for k-th column: x^(2*k-1)/(1-x)^(k+1).
Identities for the Fibonacci polynomials F(n, x):
F(m+n+1, x) = F(m+1, x)*F(n+1, x) + x*F(m, x)F(n, x).
F(n, x)^2-F(n-1, x)*F(n+1, x) = (-x)^(n-1).
The degree of F(n, x) is floor((n-1)/2) and F(2p, x) = F(p, x) times a polynomial of equal degree which is 1 mod p.
From Roger L. Bagula, Feb 20 2009: (Start)
p(x,n) = Sum_{m=0..floor((n+1)/2)} binomial(n-m+1, m)*x^m;
p(x,n) = p(x, n - 1) + x*p(x, n - 2). (End)
T(n, k) = A102541(2*n+2, 2*k+1) + A102541(2*n+1, 2*k) - A102541(2*n+3, 2*k+1), n >= 0 and 0 <= k <= floor(n/2). - Johannes W. Meijer, Aug 26 2013
G.f.: 1/(1-x-y*x^2) = R(0)/2, where R(k) = 1 + 1/(1 - (2*k+1+ x*y)*x/((2*k+2+ x*y)*x + 1/R(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
O.g.f. G(x,t) = x/(1-x-tx^2) = x + x^2 + (1+t) x^3 + (1+2t) x^4 + ... has the inverse Ginv(x,t) = -[1+x-sqrt[(1+x)^2 + 4tx^2]]/(2tx) = x - x^2 + (1-t) x^3 + (-1+3t) x^4 + ..., an o.g.f. for the signed Motzkin polynomials of A055151, consistent with A134264 with h_0 = 1, h_1 = -1, h_2 = -t, and h_n = 0 otherwise. - Tom Copeland, Jan 21 2016
O.g.f. H(x,t) = x (1+tx)/ [1-x(1+tx)] = x + (1+t) x^2 + (1+2t) x^3 + ... = -L[Cinv(-tx)/t], where L(x) = x/(1+x) with inverse Linv(x) = x/(1-x) and Cinv(x) = x (1-x) is the inverse of C(x) = (1-sqrt(1-4x))/2, the o.g.f. of the shifted Catalan numbers A000108. Then Hinv(x,t) = -C[t Linv(-x)]/t = [-1 + sqrt(1+4tx/(1+x))]/2t = x - (1+t) x^2 + (1+2t+2t^2) x^3 - (1+3t+6t^2+5t^3) x^4 + ..., which is signed A098474, reverse of A124644. - Tom Copeland, Jan 25 2016
T(n, k) = GegenbauerC(k, (n+1)/2-k, 1). - Peter Luschny, May 10 2016
A350842 Number of integer partitions of n with no difference -2.
1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 40, 54, 69, 89, 118, 146, 187, 239, 297, 372, 468, 575, 711, 880, 1075, 1314, 1610, 1947, 2359, 2864, 3438, 4135, 4973, 5936, 7090, 8466, 10044, 11922, 14144, 16698, 19704, 23249, 27306, 32071, 37639, 44019, 51457, 60113
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 12 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (211) (41) (51) (52) (1111) (221) (222) (61) (2111) (321) (322) (11111) (411) (511) (2211) (2221) (21111) (3211) (111111) (4111) (22111) (211111) (1111111)
Links
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}]
A350839 Number of integer partitions of n with a difference < -1 and a conjugate difference < -1.
0, 0, 0, 0, 0, 1, 2, 3, 7, 11, 17, 26, 39, 54, 81, 108, 148, 201, 269, 353, 467, 601, 779, 995, 1272, 1605, 2029, 2538, 3171, 3941, 4881, 6012, 7405, 9058, 11077, 13478, 16373, 19817, 23953, 28850, 34692, 41599, 49802, 59461, 70905, 84321, 100155, 118694
Offset: 0
Keywords
Comments
We define a difference of a partition to be a difference of two adjacent parts.
Examples
The a(5) = 1 through a(10) = 17 partitions: (311) (411) (511) (422) (522) (622) (3111) (4111) (611) (711) (811) (31111) (3311) (4221) (4222) (4211) (4311) (4411) (5111) (5211) (5221) (41111) (6111) (5311) (311111) (33111) (6211) (42111) (7111) (51111) (42211) (411111) (43111) (3111111) (52111) (61111) (331111) (421111) (511111) (4111111) (31111111)
Crossrefs
Programs
-
Mathematica
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],(Min@@Differences[#]<-1)&&(Min@@Differences[conj[#]]<-1)&]],{n,0,30}]
A350844 Number of strict integer partitions of n with no difference -2.
1, 1, 1, 2, 1, 3, 3, 4, 4, 7, 7, 8, 11, 12, 15, 18, 21, 23, 31, 32, 40, 45, 54, 59, 73, 78, 94, 106, 122, 136, 161, 177, 203, 231, 259, 293, 334, 372, 417, 476, 525, 592, 663, 742, 821, 931, 1020, 1147, 1271, 1416, 1558, 1752, 1916, 2137, 2357, 2613, 2867
Offset: 0
Keywords
Examples
The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12): 1 2 3 4 5 6 7 8 9 A B C 21 32 51 43 62 54 73 65 84 41 321 52 71 63 82 74 93 61 521 72 91 83 A2 81 541 92 B1 432 721 A1 543 621 4321 632 651 821 732 741 921 6321
Links
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],0|-2]&]],{n,0,30}]
A060945 Number of compositions (ordered partitions) of n into 1's, 2's and 4's.
1, 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, 520, 912, 1601, 2809, 4930, 8651, 15182, 26642, 46754, 82047, 143983, 252672, 443409, 778128, 1365520, 2396320, 4205249, 7379697, 12950466, 22726483, 39882198, 69988378, 122821042, 215535903, 378239143, 663763424, 1164823609
Offset: 0
Comments
Diagonal sums of A038137. - Paul Barry, Oct 24 2005
From Gary W. Adamson, Oct 28 2010: (Start)
INVERT transform of the aerated Fibonacci sequence (1, 0, 1, 0, 2, 0, 3, 0, 5, ...).
a(n) = term (4,4) in the n-th power of the matrix [0,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,1,1]. (End)
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=3, I={2}. - Vladimir Baltic, Mar 07 2012
Number of compositions of n if the summand 2 is frozen in place or equivalently, if the ordering of the summand 2 does not count. - Gregory L. Simay, Jul 18 2016
a(n) - a(n-2) = number of compositions of n with no 2's = A005251(n+1). - Gregory L. Simay, Jul 18 2016
In general, the number of compositions of n with summand k frozen in place is equal to the number of compositions of n with only summands 1,...,k,2k. - Gregory L. Simay, May 10 2017
In the same way that the sum of any two alternating terms of A006498 produces a term from A000045 (the Fibonacci sequence), so it could be thought of as a "meta-Fibonacci," and the sum of any two alternating terms of A013979 produces a term from A000930 (Narayana’s cows), so it could analogously be called "meta-Narayana’s cows," this sequence embeds (can generate) A000931 (the Padovan sequence), as the odd terms of A000931 are generated by the sum of successive elements (e.g. 1+2=3, 2+3=5, 3+6=9, 6+10=16) and its even terms are generated by the difference of "supersuccessive" (second-order successive or "alternating," separated by a single other term) terms (e.g. 10-3=7, 18-6=12, 31-10=21, 55-18=37) — or, equivalently, adding "supersupersuccessive" terms (separated by 2 other terms, e.g. 1+6=7, 2+10=12, 3+18=21, 6+31=37) — so it could be dubbed the "metaPadovan." - Michael Cohen and Yasuyuki Kachi, Jun 13 2024
Examples
There are 18=a(6) compositions of 6 with the summand 2 frozen in place: (6), (51), (15), (4[2]), (33), (411), (141), (114), (3[2]1), (1[2]3), ([222]), (3111), (1311), (1131), (1113), ([22]11), ([2]1111), (111111). Equivalently, the position of the summand 2 does not affect the composition count. For example, (321)=(231)=(312) and (123)=(213)=(132).
Links
- Harry J. Smith, Table of n, a(n) for n = 0..500
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics 4 (2010), 119-135
- Michael Cohen and Yasuyuki Kachi (2024). Recurrence Relations Rhythm. In: Noll, T., Montiel, M., Gómez, F., Hamido, O.C., Besada, J.L., Martins, J.O. (eds) Mathematics and Computation in Music. MCM 2024. Lecture Notes in Computer Science, vol. 14639. Springer, Cham.
- K. Edwards, M. A. Allen, Strongly restricted permutations and tiling with fences, Disc. Appl. Math. 187 (2015) 82-90, Sect. 4.3
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,1).
Crossrefs
Programs
-
Haskell
a060945 n = a060945_list !! (n-1) a060945_list = 1 : 1 : 2 : 3 : 6 : zipWith (+) a060945_list (zipWith (+) (drop 2 a060945_list) (drop 3 a060945_list)) -- Reinhard Zumkeller, Mar 23 2012
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-x-x^2-x^4) )); // G. C. Greubel, Apr 09 2021 -
Maple
m:= 40; S:= series( 1/(1-x-x^2-x^4), x, m+1); seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Apr 09 2021
-
Mathematica
LinearRecurrence[{1,1,0,1}, {1,1,2,3}, 39] (* or *) CoefficientList[Series[1/(1-x-x^2-x^4), {x, 0, 38}], x] (* Michael De Vlieger, May 10 2017 *)
-
PARI
N=66; my(x='x+O('x^N)); Vec(1/(1-x-x^2-x^4)) /* Joerg Arndt, Oct 21 2012 */
-
Sage
def A060945_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(1-x-x^2-x^4) ).list() A060945_list(40) # G. C. Greubel, Apr 09 2021
Formula
a(n) = a(n-1) + a(n-2) + a(n-4).
G.f.: 1 / (1 - x - x^2 - x^4).
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} C(i, n-k-i)*C(2*i-n+k, 3*k-2*n+2*i). - Paul Barry, Oct 24 2005
a(n) + a(n+1) = A005314(n+2). - R. J. Mathar, Jun 17 2020
Extensions
a(0) = 1 prepended by Joerg Arndt, Oct 21 2012
A350841 Heinz numbers of integer partitions with a difference < -1 and a conjugate difference < -1.
20, 28, 40, 44, 52, 56, 63, 68, 76, 80, 84, 88, 92, 99, 100, 104, 112, 116, 117, 124, 126, 132, 136, 140, 148, 152, 153, 156, 160, 164, 168, 171, 172, 176, 184, 188, 189, 196, 198, 200, 204, 207, 208, 212, 220, 224, 228, 232, 234, 236, 244, 248, 252, 260, 261
Offset: 1
Keywords
Comments
We define a difference of a partition to be a difference of two adjacent parts.
Examples
The terms together with their prime indices begin: 20: (3,1,1) 28: (4,1,1) 40: (3,1,1,1) 44: (5,1,1) 52: (6,1,1) 56: (4,1,1,1) 63: (4,2,2) 68: (7,1,1) 76: (8,1,1) 80: (3,1,1,1,1) 84: (4,2,1,1) 88: (5,1,1,1) 92: (9,1,1) 99: (5,2,2)
Crossrefs
Heinz number rankings are in parentheses below.
These partitions are counted by A350839.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Select[Range[100],(Min@@Differences[Reverse[primeMS[#]]]<-1)&&(Min@@Differences[conj[primeMS[#]]]<-1)&]
A118430 Number of binary sequences of length n containing exactly one subsequence 010.
0, 0, 0, 1, 4, 10, 22, 47, 98, 199, 396, 777, 1508, 2900, 5534, 10492, 19782, 37119, 69358, 129118, 239578, 443229, 817822, 1505389, 2764986, 5068435, 9273928, 16940488, 30897020, 56271128, 102347564, 185922589, 337353688, 611462514
Offset: 0
Keywords
Comments
Examples
a(4) = 4 because we have 0100, 0101, 0010 and 1010.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Lemma 2.1, k=2, 1 peak.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,6,-5,2,-1).
Programs
-
Maple
g:=z^3/(1-2*z+z^2-z^3)^2: gser:=series(g,z=0,40): seq(coeff(gser,z,n),n=0..38);
-
Mathematica
LinearRecurrence[{4, -6, 6, -5, 2, -1}, {0, 0, 0, 1, 4, 10}, 40] (* Jean-François Alcover, May 11 2019 *)
Formula
G.f.: z^3/(1-2*z+z^2-z^3)^2.
A077855 Expansion of 1/((1-2*x+x^2-x^3)*(1-x)).
1, 3, 6, 11, 20, 36, 64, 113, 199, 350, 615, 1080, 1896, 3328, 5841, 10251, 17990, 31571, 55404, 97228, 170624, 299425, 525455, 922110, 1618191, 2839728, 4983376, 8745216, 15346785, 26931731, 47261894, 82938843, 145547524, 255418100, 448227520, 786584465
Offset: 0
Comments
a(n) is the number of binary words of length n+2 such that there is at least one run of 0's and every run of 0's is of length >=2. a(1)=3 because we have: {0,0,0}, {0,0,1}, {1,0,0}. - Geoffrey Critzer, Jan 12 2013
INVERT transform of A099254: (1, 2, 1, -2, -4, -2, 3, 6, 3, ...). - Gary W. Adamson, Jan 11 2017
a(n) is the number of nonempty subsets A of {1, 2, ..., n+1} with the property that every element in A has at least one consecutive neighbor also in A. That is, for every element x in A, either x-1 is in A or x+1 is in A. - MingKun Yue, Mar 07 2025
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..4092
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-1).
Programs
-
Mathematica
nn=40; a=x^2/(1-x); Drop[CoefficientList[Series[(a+1)/(1-x a/(1-x))/(1-x)-1/(1-x), {x,0,nn}], x], 2] (* Geoffrey Critzer, Jan 12 2013 *) LinearRecurrence[{3, -3, 2, -1}, {1, 3, 6, 11}, 36] (* or *) CoefficientList[ Series[1/(x^4 - 2 x^3 + 3 x^2 - 3 x + 1), {x, 0, 35}], x] (* Robert G. Wilson v, Nov 25 2016 *)
-
PARI
Vec((1-x)^(-1)/(1-2*x+x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
Formula
G.f.: 1/((1-2*x+x^2-x^3)*(1-x)).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4). - Seiichi Manyama, Nov 25 2016
a(n) = Sum_{i=1..(n+3)} binomial((n+3)-i, (n+3)-3*i). - Wesley Ivan Hurt, Jul 07 2020
a(n) ~ (48 - 11*r + 29*r^2) / (23 * r^n), where r = 0.569840290998... is the root of the equation r*(2 - r + r^2) = 1. - Vaclav Kotesovec, Apr 15 2024
From MingKun Yue, Mar 07 2025: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 1.
a(n) = a(n-1) + Sum_{i=1..(n-3)} a(i) + n. (End)
A193147 Expansion of 1/(1 - x - 2*x^3 - x^5).
1, 1, 1, 3, 5, 8, 15, 26, 45, 80, 140, 245, 431, 756, 1326, 2328, 4085, 7168, 12580, 22076, 38740, 67985, 119305, 209365, 367411, 644761, 1131476, 1985603, 3484490, 6114853, 10730820, 18831276, 33046585, 57992715, 101770120, 178594110, 313410816, 549997641
Offset: 0
Comments
The Ze3 sums, see A180662 for the definition of these sums, of the "Races with Ties" triangle A035317 equal this sequence.
Number of tilings of a 5 X 2n rectangle with 5 X 1 pentominoes. - M. Poyraz Torcuk, Dec 18 2021
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,0,1).
Programs
-
Maple
A193147 := proc(n) option remember: if n>=-4 and n<=-1 then 0 elif n=0 then 1 else procname(n-1) + 2*procname(n-3) + procname(n-5) fi: end: seq(A193147(n), n=0..32);
-
Mathematica
Series[1/(1 - x - 2*x^3 - x^5), {x, 0, 32}] // CoefficientList[#, x]& (* Jean-François Alcover, Apr 02 2015 *)
-
Maxima
a(n):=sum(sum(binomial(j,3*n-5*m+2*j)*binomial(2*m-n,j)*2^(3*n-5*m+2*j), j,0,2*m-n),m,floor((n+1)/2),n); /* Vladimir Kruchinin, Mar 10 2013 */
Formula
G.f.: 1/(1-x-2*x^3-x^5) = -1 / ( (1+x+x^2)*(x^3-x^2+2*x-1) ).
a(n) = a(n-1) + 2*a(n-3) + a(n-5) with a(n) = 0 for n= -4, -3, -2, -1 and a(0) = 1.
a(n) = (5*b(n+1) - 4*b(n) + 3*b(n-1) + 2*c(n) + 3*c(n-1))/7 with b(n) = A005314(n) and c(n) = A049347(n).
G.f.: 1 + x/(U(0)-x) where G(k)= 1 - x^2*(k+1)/(1 - 1/(1 + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2012
a(n) = Sum_{m=floor((n+1)/2)..n} Sum_{j=0..2*m-n} C(j,3*n-5*m+2*j) * C(2*m-n,j) * 2^(3*n-5*m+2*j). - Vladimir Kruchinin, Mar 10 2013
With offset 1, the INVERT transform of (1 + 2x^2 + x^4). - Gary W. Adamson, Mar 30 2017
a(n) = Sum_{k=0..floor(2*n/5)} binomial(2*n-4*k,k). - Seiichi Manyama, Jun 14 2024
Comments