A099254 Self-convolution of A010892. The g.f. is 1/(Alexander polynomial of granny knot).
1, 2, 1, -2, -4, -2, 3, 6, 3, -4, -8, -4, 5, 10, 5, -6, -12, -6, 7, 14, 7, -8, -16, -8, 9, 18, 9, -10, -20, -10, 11, 22, 11, -12, -24, -12, 13, 26, 13, -14, -28, -14, 15, 30, 15, -16, -32, -16, 17, 34, 17, -18, -36, -18, 19, 38, 19, -20, -40, -20, 21, 42, 21
Offset: 0
Links
- A.H.M. Smeets, Table of n, a(n) for n = 0..20000
- Index entries for linear recurrences with constant coefficients, signature (2,-3,2,-1).
Programs
-
Maple
A099254 := proc(n) option remember ; if n <= 3 then op(n+1,[1,2,1,-2]) ; else 2*procname(n-1)-3*procname(n-2)+2*procname(n-3)-procname(n-4) ; end if; end proc: seq(A099254(n),n=0..80) ; # R. J. Mathar, Jul 08 2022
-
Mathematica
LinearRecurrence[{2, -3, 2, -1}, {1, 2, 1, -2}, 100] (* Jean-François Alcover, Sep 21 2022 *)
-
Python
a0,a1,a2,a3,n = -2,1,2,1,3 print(0,a3) print(1,a2) print(2,a1) print(3,a0) while n < 20000: a0,a1,a2,a3,n = 2*a0-3*a1+2*a2-a3,a0,a1,a2,n+1 print(n,a0) # A.H.M. Smeets, Sep 13 2018
-
Python
def A099254(n): a, b = divmod(n,3) return (1+(b&1))*(-a-1 if a&1 else a+1) # Chai Wah Wu, Jan 31 2023
Formula
G.f.: 1/(1 - 2*x + 3*x^2 - 2*x^3 + x^4) = 1/(1 - x + x^2)^2.
a(n) = 4*sqrt(3)*sin(Pi*n/3 + Pi/3)/9 + 2*(n + 1)*sin(Pi*n/3 + Pi/6)/3.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*(n-k+1)*(-1)^k. - Paul Barry, Nov 12 2004
a(n) = 2*cos(2*Pi*(n + 2)/3)*(floor(n/3) + 1)*(-1)^(n+1). - Tani Akinari, Jul 01 2013
a(n) = (1/54)*(18*(n + 2)*(-1)^floor(n/3) + (3*n + 11)*(-1)^floor((n + 1)/3) - 9*(n + 1)*(-1)^floor((n + 2)/3) - 2*(3*n + 8)*(-1)^floor((n + 4)/3)). - John M. Campbell, Dec 23 2016
From A.H.M. Smeets, Sep 13 2018: (Start)
a(n) = 2*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4) for n >= 4.
a(3*k) = a(3*k+2) = (-1)^k*(k + 1) for k >= 0.
a(3*k+1) = -(-1)^k*2*(k + 1) for k >= 0. (End)
Sum_{n>=0} 1/a(n) = 5*log(2)/2. - Amiram Eldar, May 10 2025
Comments