cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Wojciech Florek

Wojciech Florek's wiki page.

Wojciech Florek has authored 3 sequences.

A349700 Difference between 4*A001590(n+2) and A075092(n).

Original entry on oeis.org

-6, 4, 6, 0, 18, 24, 30, 92, 138, 236, 518, 856, 1570, 3072, 5374, 9972, 18714, 33684, 62406, 115440, 210482, 388776, 715934, 1312460, 2419114, 4449532, 8174406, 15049672, 27675714, 50884368, 93629694, 172187364, 316668474, 582540836, 1071371910, 1970517728
Offset: 0

Author

Wojciech Florek, Nov 25 2021

Keywords

Comments

Tribonacci numbers 4*A001590(n+2) (i.e., tribonacci numbers t(n) = t(n-1) + t(n-2) + t(n-3) with t(0) = 0, t(1) = 4, t(2) = 8) for n > 2 are numbers of ternary sequences (q(1),q(2),...,q(n)), q(i) = 0,1,2, of length n such that all triples (q(i),q(i+1),q(i+2)) contain digits 0 and 1 at least once. In the other words {0,1} is a subset of each {q(i),q(i+1),q(i+2)}. Similarly, A075092(n), for n > 2, presents a number of ternary cyclic sequences with this property. Hence, a(n), for n > 2, gives a number of (ordinary) sequences which do not lead to cyclic sequences with triples (q(n-1),q(n),q(1)) and (q(n),q(1),q(2)) satisfying the above formulated condition. The special cases, n = 1,2, can be included in a way proposed in A001644.
The recurrence formula is the same as this for A075092, with different initial conditions.

Examples

			If n = 4, then there are 24 finite sequences: 0010, 0011, 0012, 0100, 0101, 0102, 0110, 0120, 0210, nine analogous starting with 1, 2010, 2011, 2012, 2100, 2101, and 2102. Only six of them, namely  0011, 0101, 0110, 1001, 1010, 1100, yield cyclic sequences satisfying the restriction imposed. Therefore, a(4) = 24 - 6 = 18.
		

Crossrefs

Programs

  • Mathematica
    nterms=50;LinearRecurrence[{0,1,4,1,0,-1},{-6,4,6,0,18,24},nterms] (* Paolo Xausa, Nov 26 2021 *)

Formula

a(n) = a(n-2) + 4*a(n-3) + a(n-4) - a(n-6), a(0) = -6, a(1) = 4, a(2) = 6, a(3) = 0, a(4) = 18, a(5) = 24.
G.f.: (4*x^5-2*x^4-20*x^3-12*x^2-4*x+6)/(-x^6+x^4+4*x^3+x^2-1).

A331890 a(n) = -a(n-1) - a(n-2) + 2*a(n-3) with a(0)=3, a(1)=-1, a(2)=-1.

Original entry on oeis.org

3, -1, -1, 8, -9, -1, 26, -43, 15, 80, -181, 131, 210, -703, 755, 368, -2529, 3671, -406, -8323, 16071, -8560, -24157, 64859, -57822, -55351, 242891, -303184, -50409, 839375, -1395334, 455141, 2618943, -5864752, 4156091, 6946547, -22832142, 24197777
Offset: 0

Author

Wojciech Florek, Jan 30 2020

Keywords

Comments

a(n) is the reflected sequence (cf. A074058) of the generalized tribonacci sequence b(n) with b(0) = 3 and b(n) = A186575(n-1) for n > 0.

Crossrefs

Programs

  • Magma
    a:=[3,-1,-1]; [n le 3 select a[n] else -Self(n-1)-Self(n-2)+2*Self(n-3):n in [1..30]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    LinearRecurrence[{-1,-1,2},{3,-1,-1},38] (* Stefano Spezia, Jan 31 2020 *)

Formula

G.f.: (3 + 2*x + x^2)/(1 + x + x^2 - 2*x^3).
a(n) = 3*A077975(n)+2*A077975(n-1)+A077975(n-2). - R. J. Mathar, Feb 28 2020

Extensions

Definition clarified by N. J. A. Sloane, Apr 23 2020

A294627 Expansion of x*(1 + x)/((1-2*x)*(1+x+x^2)).

Original entry on oeis.org

0, 1, 2, 3, 7, 14, 27, 55, 110, 219, 439, 878, 1755, 3511, 7022, 14043, 28087, 56174, 112347, 224695, 449390, 898779, 1797559, 3595118, 7190235, 14380471, 28760942, 57521883, 115043767, 230087534, 460175067, 920350135, 1840700270, 3681400539, 7362801079, 14725602158, 29451204315
Offset: 0

Author

Wojciech Florek, Feb 12 2018

Keywords

Comments

A generalized tribonacci (A001590) sequence.
For n > 2, 6*a(n) is the number of quaternary sequences of length n in which all triples (q(i),q(i+1),q(i+2)) contain two (arbitrarily chosen) digits, e.g., 0 and 3.
Similarly, recurrences a(n) = a(n-1) + a(n-2) + k*a(n-3) are related to binary (k=0, the Fibonacci sequence A000045), ternary (k=1, the tribonacci sequence A001590), quinary (k=3) and so on sequences with all triples (t(i),t(i+1),t(i+2)) containing two (arbitrarily chosen) digits (usually 0 and k+1).
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and two colors of trominoes, with the restriction that the first tile cannot be a tromino. - Greg Dresden and Bora Bursalı, Aug 31 2023
For n > 1, a(n) is the number of ways to tile a strip of length n-2 with squares, dominoes, and two colors of trominoes, where the strip begins with an upper level of two cells. For example, when n=7 we have this strip of length 5:
_
|||_____
|||_|||. - Guanji Chen and Greg Dresden, Jun 17 2024

Examples

			For n=4 there are 6*7=42 quaternary sequences of length 4 such that each triple (i.e., exactly two of them: q1,q2,q3 and q2,q3,q4) contain both 0 and 3. They are 003x, 030x, 03y0, 0330, 330x, 303x, 30y3, 3003, 0y30, 3y03, y03x, y30x, where x=0,1,2,3 and y=1,2.
		

Crossrefs

Cf. A000045, A001590, A007040, A033129 (partial sums), A078043, A167373.

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 2}, {0, 1, 2}, 50] (* Paolo Xausa, Aug 28 2024 *)
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x*(1+x)/(1-x-x^2-2*x^3))) \\ Altug Alkan, Mar 03 2018

Formula

a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2.
a(n+1)/a(n) tends to 2, the unique real root of x^3 - x^2 - x - 2 = 0.
a(n+1) = abs(A078043(n)).
7*a(n) = 3*2^n - A167373(n+1). - R. J. Mathar, Mar 24 2018
E.g.f.: exp(-x/2)*(9*exp(5*x/2) - 9*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/21. - Stefano Spezia, Aug 29 2024