A349700 Difference between 4*A001590(n+2) and A075092(n).
-6, 4, 6, 0, 18, 24, 30, 92, 138, 236, 518, 856, 1570, 3072, 5374, 9972, 18714, 33684, 62406, 115440, 210482, 388776, 715934, 1312460, 2419114, 4449532, 8174406, 15049672, 27675714, 50884368, 93629694, 172187364, 316668474, 582540836, 1071371910, 1970517728
Offset: 0
Examples
If n = 4, then there are 24 finite sequences: 0010, 0011, 0012, 0100, 0101, 0102, 0110, 0120, 0210, nine analogous starting with 1, 2010, 2011, 2012, 2100, 2101, and 2102. Only six of them, namely 0011, 0101, 0110, 1001, 1010, 1100, yield cyclic sequences satisfying the restriction imposed. Therefore, a(4) = 24 - 6 = 18.
Links
- Wojciech Florek, A class of generalized Tribonacci sequences applied to counting problems, Appl. Math. Comput., 338 (2018), 809-821.
- W. O. J. Moser, Cyclic binary strings without long runs of like (alternating) bits, Fibonacci Quart. 31(1) (1993), 2-6.
- Index entries for linear recurrences with constant coefficients, signature (0,1,4,1,0,-1).
Programs
-
Mathematica
nterms=50;LinearRecurrence[{0,1,4,1,0,-1},{-6,4,6,0,18,24},nterms] (* Paolo Xausa, Nov 26 2021 *)
Formula
a(n) = a(n-2) + 4*a(n-3) + a(n-4) - a(n-6), a(0) = -6, a(1) = 4, a(2) = 6, a(3) = 0, a(4) = 18, a(5) = 24.
G.f.: (4*x^5-2*x^4-20*x^3-12*x^2-4*x+6)/(-x^6+x^4+4*x^3+x^2-1).
Comments