cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A158983 Coefficients of polynomials (in descending powers of x) P(n,x) := 2 + P(n-1,x)^2, where P(1,x) = x + 2.

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 28, 48, 38, 1, 16, 120, 544, 1628, 3296, 4432, 3648, 1446, 1, 32, 496, 4928, 35064, 189248, 800992, 2711424, 7419740, 16475584, 29610272, 42666880, 48398416, 41867904, 26125248, 10550016, 2090918, 1, 64, 2016, 41600, 631536
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2009

Keywords

Examples

			Row 1: 1 2 (from x+2)
Row 2: 1 4 6 (from x^2+4x+6)
Row 3: 1 8 28 48 38
Row 4: 1 16 120 544 1628 3296 4432 3648 1446
		

Crossrefs

Cf. A158982, A158984, A158985, A158986. A102847 (row sums).

Formula

From Peter Bala, Jul 01 2015: (Start)
P(n,x) = P(n,-4 - x) for n >= 2.
P(n+1,x)= P(n,(2 + x)^2). Thus if alpha is a zero of P(n,x) then sqrt(alpha) - 2 is a zero of P(n+1,x).
Define a sequence of polynomials Q(n,x) by setting Q(1,x) = 2 + x^2 and Q(n,x) = Q(n-1, 2 + x^2) for n >= 2. Then P(n,x) = Q(n,sqrt(x)).
Q(n,x) = Q(k,Q(n-k,x)) for 1 <= k <= n-1; P(n,x) = P(k,P(n-k,x)^2) for 1 <= k <= n - 1.
n-th row sum = P(n,1) = A102847(n);
P(n,1) = P(n+1,-1) = P(n+1,-3); P(n,1) = P(n,-5) for n >= 2.
(End)

A158985 Coefficients of polynomials (in descending powers of x) P(n,x) := 1 + P(n-1,x)^2, where P(1,x) = x + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 8, 8, 5, 1, 8, 32, 80, 138, 168, 144, 80, 26, 1, 16, 128, 672, 2580, 7664, 18208, 35296, 56472, 74944, 82432, 74624, 54792, 31776, 13888, 4160, 677, 1, 32, 512, 5440, 43048, 269920, 1393728, 6082752, 22860480, 75010560, 217147904
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2009

Keywords

Examples

			Row 1: 1 1 (from x + 1)
Row 2: 1 2 2 (from x^2 + 2*x + 2)
Row 3: 1 4 8 8 5
Row 4: 1 8 32 80 138 168 144 80 26
		

Crossrefs

Programs

  • PARI
    tabf(nn) = {my(P = x+1); print(Vec(P)); for (n=1, nn, P = 1 + P^2; print(Vec(P)););} \\ Michel Marcus, Jul 01 2015

Formula

From Peter Bala, Jul 01 2015: (Start)
P(n,x) = P(n,-2 - x) for n >= 2.
P(n+1,x)= P(n,(1 + x)^2). Thus if alpha is a zero of P(n,x) then sqrt(alpha) - 1 is a zero of P(n+1,x).
Define a sequence of polynomials Q(n,x) by setting Q(1,x) = 1 + x^2 and Q(n,x) = Q(n-1, 1 + x^2) for n >= 2. Then P(n,x) = Q(n,sqrt(x)).
Q(n,x) = Q(k,Q(n-k,x)) for 1 <= k <= n-1; P(n,x) = P(k,P(n-k,x)^2) for 1 <= k <= n - 1.
n-th row sum = P(n,1) = A003095(n+1);
P(n,1) = P(n+1,0) = P(n+1,-2); P(n,1) = P(n,-3) for n >= 2.
P(n,2) = A062013(n). (End)

A158984 Coefficients of polynomials (in descending powers of x) P(n,x) := -1 + P(n-1,x)^2, where P(1,x) = x - 1.

Original entry on oeis.org

1, -1, 1, -2, 0, 1, -4, 4, -1, 1, -8, 24, -32, 14, 8, -8, 0, 0, 1, -16, 112, -448, 1116, -1744, 1552, -384, -700, 736, -160, -128, 64, 0, 0, 0, -1, 1, -32, 480, -4480, 29112, -139552, 509600, -1441024, 3166616, -5345344, 6668992, -5473536, 1494624
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2009

Keywords

Examples

			Row 1: 1 -1 (from x-1)
Row 2: 1 -2 0 (from x^2-2x)
Row 3: 1 -4 4 -1
Row 4: 1 -8 24 -32 14 8 -8 0 0
		

Crossrefs

Programs

  • PARI
    tabf(nn) = {p = x-1; print(Vec(p)); for (n=2, nn, p = -1 + p^2; print(Vec(p)););} \\ Michel Marcus, Mar 01 2016

Formula

From Peter Bala, Jul 01 2015: (Start)
P(n,x) = P(n,2 - x) for n >= 2.
P(n+1,x)= P(n,(x - 1)^2). Thus if alpha is a zero of P(n,x) then sqrt(alpha) + 1 is a zero of P(n+1,x).
Define a sequence of polynomials Q(n,x) by setting Q(1,x) = -1 + x^2 and Q(n,x) = Q(n-1, -1 + x^2) for n >= 2. Then P(n,x) = Q(n,sqrt(x)).
Q(n,x) = Q(k,Q(n-k,x)) for 1 <= k <= n - 1; P(n,x) = P(k,P(n-k,x)^2) for 1 <= k <= n - 1.
P(n,x)^(2^k) divides P(n + 2*k,x) in Z[x] for k = 1,2,....
P(n,4) = A003096(n). (End)

A158986 Coefficients of polynomials Q(n,x):=-2+(1+Q(n-1,x))^2, where Q(1,x)=x-2.

Original entry on oeis.org

1, -2, 1, -2, -1, 1, -4, 4, 0, -2, 1, -8, 24, -32, 14, 8, -8, 0, -1, 1, -16, 112, -448, 1116, -1744, 1552, -384, -700, 736, -160, -128, 64, 0, 0, 0, -2, 1, -32, 480, -4480, 29112, -139552, 509600, -1441024, 3166616, -5345344, 6668992, -5473536, 1494624, 3005056, -4820608
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2009

Keywords

Comments

Let P(n,x) be the n-th polynomial at A158984. Then Q(n,x)=P(n-1,x)-1 is a factor of P(n,x).

Examples

			Row 1: 1 -2 (from x-2)
Row 2: 1 -2 -1 (from x^2-2x-1)
Row 3: 1 -4 4 0 -2
Row 4: 1 -8 24 -32 14 8 -8 0 -1
		

Crossrefs

Programs

  • PARI
    tabf(nn) = {p = x-2; print(Vec(p)); for (n=2, nn, p = -2 + (p+1)^2; print(Vec(p)););} \\ Michel Marcus, Mar 01 2016
Showing 1-4 of 4 results.