A094262
Triangle read by rows: T(n,k) is the number of rooted trees with k nodes which are disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.
Original entry on oeis.org
1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 14, 61, 124, 131, 70, 15, 1, 30, 240, 890, 1830, 2226, 1600, 630, 105, 1, 62, 841, 5060, 16990, 35216, 47062, 40796, 22225, 6930, 945, 1, 126, 2772, 25410, 127953, 401436, 836976, 1196532, 1182195, 795718, 349020, 90090, 10395
Offset: 1
Row 5 contains 1,30,240,890,1830,2226,1600,630,105, so the formula generating Stirling2(n+4,n) numbers (A001298) will be the following: 1 + 30*(n-5) + 240*C(n-5,2) + 890*C(n-5,3) + 1830*C(n-5,4) + 2226*C(n-5,5) + 1600*C(n-5,6) + 630*C(n-5,7) + 105*C(n-5,8). For example, taking n = 9 gives Stirling2(13,9) = 359502.
Triangle starts:
1;
1, 2, 1;
1, 6, 12, 10, 3;
1, 14, 61, 124, 131, 70, 15;
1, 30, 240, 890, 1830, 2226, 1600, 630, 105;
...
From _Peter Bala_, Jun 14 2016: (Start)
Connection with row polynomials of A134991:
R(2,z) = (1 + z)^2*z
R(3,z) = (1 + z)^2*(z + 3*z^2)
R(4,z) = (1 + z)^4*(z + 10*z^2 + 15*z^3)
R(5,z) = (1 + z)^5*(z + 25*z^2 + 105*z^3 + 105*z^4). (End)
From _Andrew Howroyd_, Mar 28 2025: (Start)
The T(3,3) = 12 trees up to relabeling have one of the following 3 forms:
{} {1} {1}
/ \ / \ |
{1} {2,3} {2} {3} {2}
|
{3}
(End)
- Andrew Howroyd, Table of n, a(n) for n = 1..2500 (rows 1..50)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions (with Formulas, Graphs and Mathematical Tables), U.S. Dept. of Commerce, National Bureau of Standards, Applied Math. Series 55, 1964, 1046 pages (9th Printing: November 1970) - Combinatorial Analysis, Table 24.4, Stirling Numbers of the Second Kind (author: Francis L. Miksa), p. 835.
- J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
- M. Kazarian, KP hierarchy for Hodge integrals, p. 2, arxiv:0809.3263 [math.AG], 18 Sep 2008. [From _Tom Copeland_, Jun 12 2015]
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.
-
row_poly := n -> (1+z)^(n+1)*add(z^k*add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m,m), m=0..k), k=0..n): T_row := n -> seq(coeff(row_poly(n),z,j),j=1..2*n+1):
seq(T_row(n),n=0..6); # Peter Luschny, Jun 15 2016
-
Clear[T, q, u]; T[0] = q[1];T[n_] := Sum[m*(u^2*q[m] + 2*u*q[m+1] + q[m+2])*D[T[n-1], q[m]], {m, 1, 2*n+1}]; row[n_] := List @@ Expand[T[n-1]] /. {u -> 1, q[] -> 1}; Table[row[n], {n, 1, 7}] // Flatten (* _Jean-François Alcover, Jun 12 2015 *)
-
T(n)={my(g=serreverse(log(((1+1/y)*x+1)/exp(x + O(x*x^n))))); [Vecrev(p/y) | p<-Vec(serlaplace(g))]}
{ my(A=T(5)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 28 2025
Edited and Name changed by
Peter Bala, Jun 16 2016
A005264
Number of labeled rooted Greg trees with n nodes.
Original entry on oeis.org
1, 3, 22, 262, 4336, 91984, 2381408, 72800928, 2566606784, 102515201984, 4575271116032, 225649908491264, 12187240730230528, 715392567595403520, 45349581052869924352, 3087516727770990992896, 224691760916830871873536
Offset: 1
G.f. = x + 3*x^2 + 22*x^3 + 262*x^4 + 4336*x^5 + 91984*x^6 + 2381408*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Israel, Table of n, a(n) for n = 1..358
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- J. Felsenstein, The number of evolutionary trees, Systematic Zoology, 27 (1978), 27-33.
- J. Felsenstein, The number of evolutionary trees, Systematic Zoology, 27 (1978), 27-33. (Annotated scanned copy)
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128.
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128. (Annotated scanned copy)
- C. Flight, Letter to N. J. A. Sloane, Nov 1990
- L. R. Foulds and R. W. Robinson, Determining the asymptotic number of phylogenetic trees, pp. 110-126 of Combinatorial Mathematics VII (Newcastle, August 1979), ed. R. W. Robinson, G. W. Southern and W. D. Wallis. Lect. Notes in Math., 829. Springer, 1980.
- L. R. Foulds & R. W. Robinson, Determining the asymptotic number of phylogenetic trees, Lecture Notes in Math., 829 (1980), 110-126. (Annotated scanned copy)
- Armin Hoenen, Steffen Eger, and Ralf Gehrke, How Many Stemmata with Root Degree k?, Proceedings of the 15th Meeting on the Mathematics of Language, pp. 11-21, 2017.
- D. J. Jeffrey, G. A. Kalugin, and N. Murdoch, Lagrange inversion and Lambert W, Preprint, 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).
- M. Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
- Paul Laubie, Combinatorics of pre-Lie products sharing a Lie bracket, arXiv:2309.05552 [math.QA], 2023. See pp. 1, 5.
- N. J. A. Sloane, Transforms
- N. S. Wedd, Letter to N. J. A. Sloane, N.D.
- Index entries for reversions of series
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
T := proc(n,k) option remember; if k=0 and (n=0 or n=1) then return(1) fi; if k<0 or k>n then return(0) fi;
(n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1) end:
A005264 := proc(n) add(T(n,k)*(-1)^k*2^(n-k-1), k=0..n-1) end;
seq(A005264(n),n=1..17); # Peter Luschny, Nov 10 2012
-
max = 17; f[x_] := -1/2 - ProductLog[-E^(-1/2)*(x + 1)/2]; Rest[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!] (* Jean-François Alcover, May 23 2012, after Peter Bala *)
a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ InverseSeries[ Series[ Exp[-x] (1 + 2 x) - 1, {x, 0, n}]], n]]; (* Michael Somos, Jun 07 2012 *)
-
a(n):=if n=1 then 1 else sum((n+k-1)!*sum(1/(k-j)!*sum(1/(l!*(j-l)!)*sum(((-1)^(i+l)*l^i*binomial(l,n+j-i-1)*2^(n+j-i-1))/i!,i,0,n+j-1),l,1,j),j,1,k),k,1,n-1); /* Vladimir Kruchinin, May 04 2012 */
-
{a(n) = local(A); if( n<1, 0, for( k= 1, n, A += x * O(x^k); A = truncate( (1 + x) * exp(A) - 1 - A) ); n! * polcoeff( A, n))}; /* Michael Somos, Apr 02 2007 */
-
{a(n) = if( n<1, 0, n! * polcoeff( serreverse( exp( -x + x * O(x^n) ) * (1 + 2*x) - 1), n))}; /* Michael Somos, Mar 26 2011 */
-
@CachedFunction
def T(n,k):
if k==0 and (n==0 or n==1): return 1
if k<0 or k>n: return 0
return (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1)
A005264 = lambda n: add(T(n,k)*(-1)^k*2^(n-k-1) for k in (0..n-1))
[A005264(n) for n in (1..17)] # Peter Luschny, Nov 10 2012
A005263
Number of labeled Greg trees.
Original entry on oeis.org
1, 1, 1, 4, 32, 396, 6692, 143816, 3756104, 115553024, 4093236352, 164098040448, 7345463787136, 363154251536896, 19653476190481408, 1155636468524067328, 73364615077878838784, 5001199614295920565248, 364363128390631094137856
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Israel, Table of n, a(n) for n = 0..359
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128.
- C. Flight, How many stemmata?, Manuscripta, 34 (1990), 122-128. (Annotated scanned copy)
- C. Flight, Letter to N. J. A. Sloane, Nov 1990
- L. R. Foulds & R. W. Robinson, Determining the asymptotic number of phylogenetic trees, Lecture Notes in Math., 829 (1980), 110-126. (Annotated scanned copy)
- V. Kurauskas, On graphs containing few disjoint excluded minors. Asymptotic number and structure of graphs containing few disjoint minors K_4, arXiv preprint arXiv:1504.08107 [math.CO], V1, Apr 30, 2015; V2, Jul 14 2019.
- Dimitris Papamichail, Angela Huang, Edward Kennedy, Jan-Lucas Ott, Andrew Miller, Georgios Papamichail, Most Compact Parsimonious Trees, arXiv preprint arXiv:1603.03315 [cs.DS], 2016.
- Index entries for sequences related to trees
-
E:= 1/4 -LambertW(-(1+x)*exp(-1/2)/2)^2 - 2*LambertW(-(1+x)*exp(-1/2)/2):
S:= series(E,x,21):
seq(coeff(S,x,j)*j!, j=0..20); # Robert Israel, Mar 28 2017
-
max = 18; b[x] := -1/2 - ProductLog[-Exp[-1/2]*(x+1)/2]; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; sol = SolveAlways[ Normal[ Series[f[x] - (1 + b[x] - b[x]^2), {x, 0, max}]] == 0, x]; First[Table[c[k], {k, 0, max}] /. sol]*Range[0, max]! (* Jean-François Alcover, May 21 2012, from e.g.f. *)
a[ n_] := If[ n < 1, Boole[n == 0], n! SeriesCoefficient[ With[ {B = InverseSeries[ Series[ Exp[-x] (1 + 2 x) - 1, {x, 0, n}]]}, B - B^2], n]] (* Michael Somos, Jun 07 2012 *)
-
{a(n) = local(A); if( n<1, n==0, for( k=1, n, A += x * O(x^k); A = truncate( (1 + x) * exp(A) - 1 - A) ); A += x * O(x^n); A -= A^2; n! * polcoeff( A, n))} /* Michael Somos, Apr 02 2007 */
A005640
Number of phylogenetic trees with n labels.
Original entry on oeis.org
1, 1, 2, 8, 64, 832, 15104, 352256, 10037248, 337936384, 13126565888, 577818263552, 28425821618176, 1545553369366528, 92034646352592896, 5956917762776367104, 416397789920380321792, 31262503202358260924416, 2508985620606225641111552, 214348807882902869374926848, 19422044917978876510600167424
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.26.
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- L. R. Foulds and R. W. Robinson, Determining the asymptotic number of phylogenetic trees, pp. 110-126 of Combinatorial Mathematics VII (Newcastle, August 1979), ed. R. W. Robinson, G. W. Southern and W. D. Wallis. Lecture Notes in Math., 829 (1980), 110-126. (Annotated scanned copy)
- J. P. Hayes, Enumeration of fanout-free Boolean functions, J. ACM, 23 (1976), 700-709.
- K. L. Kodandapani and S. C. Seth, On combinational networks with restricted fan-out, IEEE Trans. Computers, 27 (1978), 309-318. (Annotated scanned copy)
- N. J. A. Sloane, Transforms
- Index entries for sequences related to trees
-
a[n_ /; n > 2] := 2^(n-1)*(n-2)!*Sum[ Binomial[n+k-2, n-2]*Sum[ (-1)^j*Binomial[k, j]*Sum[ ((-1)^l*2^(j-l)*Binomial[j, l]*(j-l)!*StirlingS1[n+j-l-2, j-l])/(n+j-l-2)!, {l, 0, j}], {j, 1, k}], {k, 1, n-2}]; a[0] = a[1] = 1; a[2] = 2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Apr 10 2012, after Vladimir Kruchinin *)
A225171
Triangle read by rows: T(n,k), 1 <= k <= n, is the number of non-degenerate fanout-free Boolean functions of n variables having AND rank k.
Original entry on oeis.org
2, 4, 4, 32, 24, 8, 416, 304, 96, 16, 7552, 5440, 1760, 320, 32, 176128, 125824, 41280, 8000, 960, 64, 5018624, 3566080, 1180928, 237440, 31360, 2688, 128, 168968192, 119614464, 39875584, 8212736, 1146880, 111104, 7168, 256, 6563282944, 4633387008, 1552320512, 325183488, 47104512, 4902912, 365568, 18432, 512
Offset: 1
Triangle begins
2,
4,4,
32,24,8,
416,304,96,16,
7552,5440,1760,320,32,
176128,125824,41280,8000,960,64,
5018624,3566080,1180928,237440,31360,2688,128,
168968192,119614464,39875584,8212736,1146880,111104,7168,256,
...
-
# Function BellMatrix defined in A264428.
BellMatrix(n -> `if`(n=0,2,add(combinat:-eulerian2(n, k)*2^(2*n-k), k=0..n)), 9); # Peter Luschny, Jan 29 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[# == 0, 2, Sum[(#+k)!*Sum[(-1)^j/(k-j)!*Sum[(-1)^i*2^(# - i + j)*StirlingS1[# - i + j, j - i]/((# - i + j)!*i!), {i, 0, j}], {j, 1, k}], {k, 1, #}]]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
T(n) = { my(g=serreverse((1 + 2*x - exp(x + O(x*x^n)))/2)); [Vecrev(p/y) | p<-Vec(serlaplace(exp(y*g)-1))] }
{ my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 28 2025
A224766
Number of non-degenerate fanout-free Boolean functions of n variables using And, Or and Not gates.
Original entry on oeis.org
2, 2, 8, 64, 832, 15104, 352256, 10037248, 337936384, 13126565888, 577818263552, 28425821618176, 1545553369366528, 92034646352592896, 5956917762776367104, 416397789920380321792, 31262503202358260924416, 2508985620606225641111552, 214348807882902869374926848
Offset: 0
- J. P. Hayes, Enumeration of fanout-free Boolean functions, J. ACM, 23 (1976), 700-709.
A225170
Number of non-degenerate fanout-free Boolean functions of n variables having AND rank 1.
Original entry on oeis.org
2, 4, 32, 416, 7552, 176128, 5018624, 168968192, 6563282944, 288909131776, 14212910809088, 772776684683264, 46017323176296448, 2978458881388183552, 208198894960190160896, 15631251601179130462208, 1254492810303112820555776, 107174403941451434687463424
Offset: 1
-
max = 16; s = -ProductLog[-Exp[x-1/2]/2] + O[x]^max; Join[{2}, Drop[CoefficientList[s, x]*Range[0, max-1]!, 2]] (* Jean-François Alcover, Oct 18 2016 *)
a[1] = 2; a[n_] := (Sum[(n + k - 1)!*Sum[(-1)^j/(k - j)!*Sum[(-1)^i*2^(n - i + j - 1)*StirlingS1[n - i + j - 1, j - i]/((n - i + j - 1)!*i!), {i, 0, j}], {j, 1, k}], {k, 1, n - 1}]);
Array[a, 20] (* Jean-François Alcover, Jun 24 2018, after Vladimir Kruchinin *)
-
seq(n) = Vec(serlaplace(serreverse((1 + 2*x - exp(x + O(x*x^n)))/2 ))) \\ Andrew Howroyd, Mar 28 2025
A005173
Number of rooted trees with 3 nodes of disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.
Original entry on oeis.org
0, 1, 12, 61, 240, 841, 2772, 8821, 27480, 84481, 257532, 780781, 2358720, 7108921, 21392292, 64307941, 193185960, 580082161, 1741295052, 5225982301, 15682141200, 47054812201, 141181213812, 423577195861, 1270798696440, 3812530307041, 11437859356572, 34314114940621
Offset: 1
From _Andrew Howroyd_, Mar 28 2025: (Start)
The a(3) = 12 trees up to relabeling have one of the following 3 forms:
{} {1} {1}
/ \ / \ |
{1} {2,3} {2} {3} {2}
|
{3}
(End)
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for sequences related to trees
- Index entries for linear recurrences with constant coefficients, signature (6, -11, 6).
-
A005173:=-z*(1+6*z)/(z-1)/(3*z-1)/(2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
CoefficientList[Series[x (1+6 x)/(1-x)/(1-2 x)/(1-3 x),{x,0,30}],x] (* Harvey P. Dale, Jul 03 2023 *)
More terms from Larry Reeves (larryr(AT)acm.org), Feb 06 2001
A005174
Number of rooted trees with 4 nodes of disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.
Original entry on oeis.org
0, 0, 10, 124, 890, 5060, 25410, 118524, 527530, 2276020, 9613010, 40001324, 164698170, 672961380, 2734531810, 11066546524, 44652164810, 179768037140, 722553165810, 2900661482124, 11634003919450, 46630112719300, 186802788139010, 748058256616124
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for sequences related to trees
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
A005175
Number of rooted trees with 5 nodes of disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.
Original entry on oeis.org
0, 0, 3, 131, 1830, 16990, 127953, 851361, 5231460, 30459980, 170761503, 931484191, 4979773890, 26223530970, 136522672653, 704553794621, 3611494269120, 18415268221960, 93516225653403, 473366777478651, 2390054857197150, 12043393363764950, 60590148885015753
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for sequences related to trees
- Index entries for linear recurrences with constant coefficients, signature (15,-85,225,-274,120).
-
A005175:=-z**2*(3+86*z+120*z**2)/(z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[(125/24) 5^n - (64/3) 4^n + (135/4) 3^n - (76/3) 2^n + 209/24, {n, 20}] (* Michael De Vlieger, Apr 12 2016 *)
Showing 1-10 of 11 results.
Comments